Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Genotype -Phenotype Correlation of PKLR Variants With Pyruvate Kinase, 2,3-Diphosphglycerate and Adenosine Triphosphate Activities in Red Blood Cells of People With Sickle Cell Disease

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT03685721
Recruitment Status : Recruiting
First Posted : September 26, 2018
Last Update Posted : October 25, 2019
Sponsor:
Information provided by (Responsible Party):
National Institutes of Health Clinical Center (CC) ( National Heart, Lung, and Blood Institute (NHLBI) )

Tracking Information
First Submitted Date September 25, 2018
First Posted Date September 26, 2018
Last Update Posted Date October 25, 2019
Actual Study Start Date June 6, 2009
Estimated Primary Completion Date October 12, 2020   (Final data collection date for primary outcome measure)
Current Primary Outcome Measures
 (submitted: September 25, 2018)
  • Genotype the 4 PKLR intron-2 variants [ Time Frame: Upon enrollment of each subject ]
    To have genotyped the 4 PKLR intron-2 variants in SCD patients from the NHLBI cohort using genomic DNA and compare them to a cohort of healthy ethnic-matched non-SCD controls and a cohort of sickle cell trait carriers, with those reported in 1000 genome project (http://www.1000genomes.org).
  • Analysis of PK-R transcriptome in red blood cells [ Time Frame: Interim analysis performed for each group N=125 ]
    Have a correlated profile of the PK-R RNA sequence with the 4 PKLR intronic genetic variants.
  • Correlation of 2,3-DPG, ATP and pyruvate kinase activities with PKLR intron-2 variants [ Time Frame: Interim analysis performed for each group N=125 ]
    Assess correlation between the quantitative assays and genotype
Original Primary Outcome Measures Same as current
Change History Complete list of historical versions of study NCT03685721 on ClinicalTrials.gov Archive Site
Current Secondary Outcome Measures Not Provided
Original Secondary Outcome Measures Not Provided
Current Other Pre-specified Outcome Measures Not Provided
Original Other Pre-specified Outcome Measures Not Provided
 
Descriptive Information
Brief Title Genotype -Phenotype Correlation of PKLR Variants With Pyruvate Kinase, 2,3-Diphosphglycerate and Adenosine Triphosphate Activities in Red Blood Cells of People With Sickle Cell Disease
Official Title Genotype -Phenotype Correlation of PKLR Variants With Pyruvate Kinase, 2,3-Diphosphglycerate and ATP Activities in Red Blood Cells of Patients With Sickle Cell Disease
Brief Summary

Background:

Some people with the same disorder on a genetic level have more complications than others. Researchers want to look for a link between the PKLR gene and sickle cell disease (SCD) symptoms. The PKLR gene helps create a protein, called pyruvate kinase that is essential in normal functioning of the red blood cell. Differences in the PKLR gene, called genetic variants, may cause some changes in the pyruvate kinase protein and other proteins, that can affect functioning of the red blood cell adding to the effect of SCD. Researchers can study these differences by looking at DNA (the material that determines inherited characteristics).

Objective:

To study how the PKLR gene affects sickle cell disease.

Eligibility:

Adults ages 18-80 of African descent. They may have sickle cell disease or not. They must not have had a transfusion recently or have a known deficiency of pyruvate kinase. They cannot be pregnant.

Design:

Participants will be screened with questions.

Participants will have blood drawn by needle in an arm vein. The blood will be genetically tested. Not much is known about how genes affect SCD, so the test results will not be shared with participants or their doctors.

...

Detailed Description

Polymerization of deoxy-sickle-hemoglobin (deoxy-HbS), the root cause of sickle cell disease (SCD) is influenced by a few factors, a key factor is 2,3-diphosphoglycerate (2,3-DPG) concentration in the red blood cells. 2,3-DPG is an allosteric effector on hemoglobin oxygen binding with a greater binding affinity to deoxygenated hemoglobin than to oxygenated hemoglobin, thus favoring polymerization of deoxy-HbS. In addition, increased 2,3-DPG concentration decreases intracellular pH in red blood cells which further promotes HbS polymerization.

2,3-DPG is an intermediate substrate in the glycolytic pathway, the only source of ATP production in red blood cells. Pyruvate kinase (PK) is a key enzyme in the final step of glycolysis; PK converts phosphoenolpyruvate (PEP) to pyruvate, creating 50% of the total red cell adenosine triphosphate (ATP) that is essential for maintaining integrity of the red cell membrane. Indeed, PK deficiency (PKD) caused by mutations in the PKLR gene that encodes red cell PK, leads to chronic hemolytic anemia. Reduced PK activity leads to accumulation of the upstream enzyme substrates, including 2,3-DPG. While increased 2,3-DPG concentration and reduction of hemoglobin oxygen affinity is beneficial in anemia caused by PKD, increased 2,3-DPG levels combined with decreased intracellular red cell pH can be detrimental in the presence of HbS, as it favors deoxy-HbS polymerisation, and thereby intravascular sickling. Indeed, the combination of PK deficiency and sickle cell trait causing an acute sickling syndrome has been previously reported in two cases.

PKLR mutations, however, are rare but intraerythrocytic PK enzyme levels form a spectrum which suggest that PKLR is likely to be a quantitative trait gene. A genetic diversity in PKLR with a range of SNPs, including several loss-of-function variants have been described in malaria-endemic populations, some of which have been associated with a significant reduction in attacks with Plasmodium falciparum malaria. These observations suggest that similar to HbS, malaria has led to positive selection of PKLR variants in the same geographic regions.

This study seeks to determine the PKLR genetic diversity in our sickle cell cohort, and whether PKLR variants modify PK levels, and activities of 2,3-DPG and ATP, key players in the sickle pathology. If so, PKLR could be another genetic determinant of SCD severity and phenotype; and increasing PK-R activity, which leads to a decrease in intracellular 2,3-DPG concentration, presents an attractive therapeutic target for SCD.

Several approaches have been considered for targeting the polymerization of deoxy-HbS, the root cause of SCD. In addition to agents inducing fetal hemoglobin, other agents that target HbS polymerization through increasing affinity of hemoglobin for oxygen (eg. GBT440), are in clinical trials (NCT03036813; NCT02850406). The results of this study could form the basis for a clinical trial of AG348, an allosteric activator of PK that is already in clinical Phase 2/3 studies for PK deficiency (NCT02476916), for treating acute sickle cell pain

Study Type Observational
Study Design Observational Model: Case-Control
Time Perspective: Cross-Sectional
Target Follow-Up Duration Not Provided
Biospecimen Not Provided
Sampling Method Non-Probability Sample
Study Population The study will be listed on the clinicaltrials.gov, Clinical Center research studies, and the National Heart, Lung and Blood Institute patient recruitment websites. Patients who are followed on other NHLBI sickle cell protocols may be asked to participate in this study, particularly subjects enrolled in the Natural History of Sickle Cell Disease (NCT00081523; 04-H-0161).
Condition
  • Sickle Cell
  • PKLR Variants
  • Adenosine Triphosphate Activities
Intervention Not Provided
Study Groups/Cohorts
  • HbAS
    HbAS genotype, of African American descent; Between 18 and 80 years of age
  • Healthy Control
    African American descent; Between 18 and 80 years of age
  • SCD
    HbSS, HbSC, HbSbeta-thal has sickle cell disease and is of African American descent; Between 18 and 80 years of age
Publications * Not Provided

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Recruitment Information
Recruitment Status Recruiting
Estimated Enrollment
 (submitted: September 25, 2018)
750
Original Estimated Enrollment Same as current
Estimated Study Completion Date May 1, 2025
Estimated Primary Completion Date October 12, 2020   (Final data collection date for primary outcome measure)
Eligibility Criteria
  • INCLUSUION CRITERIA:
  • Between 18 and 80 years of age
  • African or of African descent
  • Willingness and capacity to provide written informed consent.

EXCLUSION CRITERIA:

  • History of blood transfusion within the last 8 weeks
  • Known to have pyruvate kinase deficiency and be on AG348
  • All volunteers will undergo the consent process under this protocol to allow for eligibility assessment. Once they have been consented to participate, they will undergo procedures per section 6.0.
Sex/Gender
Sexes Eligible for Study: All
Ages 18 Years to 80 Years   (Adult, Older Adult)
Accepts Healthy Volunteers Yes
Contacts
Contact: James Nichols, R.N. (301) 402-2105 jim.nichols@nih.gov
Listed Location Countries United States
Removed Location Countries  
 
Administrative Information
NCT Number NCT03685721
Other Study ID Numbers 180146
18-H-0146
Has Data Monitoring Committee Not Provided
U.S. FDA-regulated Product
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
IPD Sharing Statement Not Provided
Responsible Party National Institutes of Health Clinical Center (CC) ( National Heart, Lung, and Blood Institute (NHLBI) )
Study Sponsor National Heart, Lung, and Blood Institute (NHLBI)
Collaborators Not Provided
Investigators
Principal Investigator: Swee Lay Thein, M.D. National Heart, Lung, and Blood Institute (NHLBI)
PRS Account National Institutes of Health Clinical Center (CC)
Verification Date October 23, 2019