Working…
COVID-19 is an emerging, rapidly evolving situation.
Get the latest public health information from CDC: https://www.coronavirus.gov.

Get the latest research information from NIH: https://www.nih.gov/coronavirus.
ClinicalTrials.gov
ClinicalTrials.gov Menu

I125 Seed Implantation vs Stereotactic Radiotherapy for Pancreatic Cancer (Ckvssip)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT03964064
Recruitment Status : Recruiting
First Posted : May 28, 2019
Last Update Posted : July 19, 2019
Sponsor:
Collaborators:
The fifth medical center of PLA general hospital
Guangxi Ruikang Hospital
Tengzhou Central People's Hospital
Information provided by (Responsible Party):
Peking University Third Hospital

Brief Summary:
Data of 100 patients with locally advanced pancreatic cancer who received stereotactic radiotherapy or ct-guided radioactive 125I seed implantation in the multicenter of the research group from July 2019 to June 2021 were collected, as well as follow-up data.To evaluate the clinical efficacy of stereotactic radiotherapy and ct-guided 125I seed therapy with 3D printing template in pancreatic cancer;In addition, the local control rate and side effects of ct-guided radioactive 125I particles in the treatment of pancreatic cancer lesions were explored, and the efficacy and safety of different doses of stereotactic radiotherapy were determined.

Condition or disease Intervention/treatment Phase
Pancreatic Cancer Non-resectable Brachytherapy Radiotherapy Radiation: Stereotactic Radiotherapy Radiation: 3D-printing Template-assisted CT-guided I125 Seed Implantation Not Applicable

Detailed Description:
  1. Radiation: Stereotactic Radiotherapy 1.1 Equipment: Accuray VSI Cyberknife stereotactic radiotherapy platform, simulated positioning CT machine, MR, positron emission computed tomography PET-CT, vacuum pad.

    1.2 Radiotherapy localization: CT, MRI and PETCT were used to simulate localization.

    1.3 Relevant Definitions of Tumor Targets CT, MRI, PET-CT fusion, combined with MRI location and PET-CT location image for sketching.

    To delineate target areas and organs at risk. GTV: Combining localization and fusion images to delineate the tumors seen PTV = GTV + 0-10mm Dangerous organs: The stomach, duodenum, jejunum, ileum, colon, spinal cord and esophagus were delineated on the base sequence of CT plain scan.

    The target area should be approved by at least one physician in charge or by a physician in charge.

    1.4 Target volume radiation dose: According to the volume, location, organ function and other factors, the dosage of radiotherapy was determined. The range of BED value of radiotherapy was 80-100 when the distance between the tumor and gastrointestinal tract was more than 5 mm (alpha/beta=10) and 60-80 when the distance between the tumor and gastrointestinal tract was less than 5 mm (alpha/beta=10).

    1.5 Normal Tissue Limit: Reference to TG101 Report

  2. CT-guided radioactive 125I seeds therapy with 3D printing template for pancreatic cancer 2.1 Preoperative planning 2.2 Design and fabrication of 3D-PNCT 2.3 125I seeds implantation: 3D-PNCT was placed on the surface of the patient's treatment area, and positioned with the help of the patient's outline features, laser lines, body surface positioning lines and template alignment reference lines.

The location of the template and the tumor is well repeated. If there are errors, the template should be adjusted in time. The insertion needle was percutaneously punctured to a predetermined depth through a template guide hole. During the puncture process, the puncture path was monitored by CT scanning and fine-tuned if necessary to avoid injuring nerves and blood vessels. Seeds implantation and CT scan were performed according to the preoperative plan to understand the distribution of seeds. During the operation, the implant needle should be added or reduced when necessary to ensure that the whole target area is adequately irradiated and the surrounding normal tissues are protected.

2.4 Postoperative dose assessment: CT scan was performed after operation, and the image was transmitted to BTPS for dose verification (Figure 3-4). The dosimetric parameters included tumor volume, D90, mPD, V100, V150 and V200.

After these treatments,to evaluate the clinical efficacy of stereotactic radiotherapy and ct-guided 125I seed therapy with 3D printing template in pancreatic cancer;In addition, the local control rate and side effects of ct-guided radioactive 125I particles in the treatment of pancreatic cancer lesions were explored, and the efficacy and safety of different doses of stereotactic radiotherapy were determined.

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 100 participants
Allocation: Non-Randomized
Intervention Model: Parallel Assignment
Intervention Model Description: non-randomized trial
Masking: None (Open Label)
Primary Purpose: Treatment
Official Title: 3D-printing Template-assisted CT-guided I125 Seed Implantation and Stereotactic Radiotherapy for Locally Advanced Pancreatic Cancer:A Prospective Multicenter Cohort Study
Actual Study Start Date : June 11, 2019
Estimated Primary Completion Date : May 31, 2021
Estimated Study Completion Date : May 1, 2022

Resource links provided by the National Library of Medicine


Arm Intervention/treatment
Experimental: I125 Seed Implantation
3D-printing Template-assisted CT-guided I125 Seed Implantation Prescription dose: gtv140-160gy ctv100-140gy Particle activity: 0.4-0.5mCi
Radiation: Stereotactic Radiotherapy

GTV: Combining localization and fusion images to delineate the tumors seen PTV = GTV + 0-10mm Target volume radiation dose: The range of BED value of radiotherapy was 80-100 when the distance between the tumor and gastrointestinal tract was more than 5 mm (alpha/beta=10) and 60-80 when the distance between the tumor and gastrointestinal tract was less than 5 mm (alpha/beta=10).

Normal Tissue Limit: Reference to TG101 Report


Experimental: Stereotactic Radiotherapy
According to the tumor volume, location, organ function and other factors, the dosage of stereotactic directional radiotherapy was determined. The range of BED value of radiotherapy was 80-100 for tumors above 5 mm from gastrointestinal tract and 60-80 for tumors below 5 mm from gastrointestinal tract.
Radiation: 3D-printing Template-assisted CT-guided I125 Seed Implantation
CT-guided radioactive 125I particle therapy with 3D printing template for pancreatic cancer Preoperative planning Design and fabrication of 3D-PNCT Particle implantation Postoperative dose assessment: CT scan was performed after operation, and the image was transmitted to BTPS for dose verification . The dosimetric parameters included tumor volume, D90, mPD, V100, V150 and V200.




Primary Outcome Measures :
  1. Overall survival (OS) [ Time Frame: 3 years after the treatment ]
    The time from enrollment to death from any cause

  2. Progression-free survival (PFS) [ Time Frame: 3 years after the treatment ]
    the time interval of disease progression since the date of diagnosis


Secondary Outcome Measures :
  1. Local control rate,LCR [ Time Frame: 3 years after the treatment ]
    patients free from the disease in neck during the follow-up time

  2. Pain score [ Time Frame: 1 years after the treatment ]
    The pain relief of patients before and after treatment was evaluated by digital scoring method

  3. Qol: Quality of Life Score of Tumor Patients [ Time Frame: 3 years after the treatment ]
    Quality of Life Score of Tumor Patients

  4. Adverse reactions [ Time Frame: 1 years after the treatment ]
    Adverse reactions during and after treatment



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years to 80 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Criteria

Inclusion Criteria:

  • Age: 18-80 years old;
  • Pathologically diagnosed pancreatic cancer patients;Follow-up treatment is in accordance with the NCCN2019 guidelines for standard treatment.
  • Clinical MDT discussion, for the unresectable locally advanced pancreatic cancer, AJCC version 8 pancreatic cancer stage T4N0M0

Arterial invasion:

The pancreatic head and neck tumor invasion of pancreas superior mesenteric artery exceed 180 °;More than 180 ° celiac tumor invasion;The tumor invaded the first jejunal branch of the superior mesenteric artery.The pancreatic body tail superior mesenteric artery or celiac tumor invasion more than 180 °;The tumor invaded the abdominal trunk and abdominal aorta.

Venous invasion:

Tumor invasion or embolization (tumor thrombus or thrombus) of the head and neck of the pancreas leads to unresectable superior mesenteric vein or portal vein reconstruction;The tumor invaded the proximal end jejunal drainage branch of most superior mesenteric veins.The invasion or embolization of a tumor in the tail of the pancreas (thrombus or thrombus) leads to the unresectable reconstruction of the superior mesenteric vein or portal vein.

  • ECOG physical condition score: 0-1, Karnofsky score 60, able to withstand puncture;
  • Expected survival 3 months;
  • Good function of main organs, no severe hypertension, diabetes and heart disease.
  • Signed informed consent;
  • Has a good compliance, families agree to accept the survival follow-up.

Exclusion Criteria:

  • Non-locally advanced pancreatic cancer.
  • Participated in other drug clinical trials within four weeks;There was a history of bleeding, and any bleeding event with severe grade of CTCAE5.0 or above occurred within 4 weeks before screening;
  • Screening of patients with known central nervous system metastasis or a history of central nervous system metastasis.
  • Patients with hypertension who cannot obtain good control by single antihypertensive drug treatment (systolic blood pressure >140mmHg, diastolic blood pressure >90mmHg);Having a history of unstable angina pectoris;Patients newly diagnosed with angina within 3 months before screening or myocardial infarction within 6 months before screening;Arrhythmia (including QTcF: 450ms in male and 470ms in female) requires long-term use of anti-arrhythmia drugs and New York heart association grade II cardiac dysfunction;
  • Long-term unhealed wounds or incomplete fracture healing;
  • Imaging showed that the tumor had invaded important blood vessels or the researchers judged that the patient's tumor had a very high possibility to invade important blood vessels during the treatment and cause fatal bleeding;
  • Coagulation function abnormalities, have bleeding tendency;Patients treated with anticoagulants or vitamin K antagonists such as warfarin, heparin or their analogues;The use of low-dose warfarin (1mg oral, once daily) or low-dose aspirin (no more than 100mg daily) for preventive purposes is permitted on the premise that the international standardized ratio of prothrombin time (INR) is 1.5;
  • Screening for the occurrence of hyperactive/venous thrombosis events in the first 6 months, such as cerebrovascular accidents (including temporary ischemic attack), deep vein thrombosis (except for venous thrombosis caused by intravenous catheterization in the early stage of chemotherapy, which was determined by the researchers to have recovered) and pulmonary embolism, etc.
  • Thyroid function was abnormal in the past and could not be kept within the normal range even in the case of drug treatment.
  • Attending has a history of psychotropic drug abuse, and can't attend or has mental disorder;
  • Always half a year after abdominal tumor lesion radiation;
  • Immunodeficiency disease, or has other acquired, congenital immunodeficiency disease, or has a history of organ transplantation;
  • Judgment according to the researchers, there is serious to endanger the safety of patients or patients completed the research associated with disease.

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03964064


Contacts
Layout table for location contacts
Contact: Junjie Wang, Chairman +860182264910 junjiewang_edu@sina.cn
Contact: Fei Xu +8618511866032 xufeibysy@163.com

Locations
Layout table for location information
China, Beijing
Peking University Third Hospital Recruiting
Beijing, Beijing, China, 100000
Contact: Junjie Wang, Chairman    +8682264910    junjiewang_edu@sina.cn   
Contact: Fei Xu    +8618511866032    xufeibysy@163.com   
Principal Investigator: Junjie Wang, Chairman         
Sub-Investigator: Fei Xu         
Sub-Investigator: Zhe Ji         
The fifth medical center of PLA general hospital Recruiting
Beijing, Beijing, China, 100000
Contact: Xuezhang Duan, director    +8613621386161    13621386161@163.com   
Principal Investigator: Xuezhang Duan         
Sub-Investigator: Jing Sun         
China, Guangxi
Guangxi Ruikang Hospital Recruiting
Nanning, Guangxi, China, 530000
Contact: Zuping Lian, director    +8613978806107    zupinglian@sina.com   
Principal Investigator: Zuping Lian, director         
China, Shandong
Tengzhou Central People's Hospital Recruiting
Tengzhou, Shandong, China, 277599
Contact: Kaixian Zhang, director    +8613563200960    kaixianzhang@aliyun.com   
Principal Investigator: Kaixian Zhang, director         
Sponsors and Collaborators
Peking University Third Hospital
The fifth medical center of PLA general hospital
Guangxi Ruikang Hospital
Tengzhou Central People's Hospital
Investigators
Layout table for investigator information
Study Chair: Junjie Wang, Chairman Peking University Third Hospital
Principal Investigator: Fei Xu Peking University Third Hospital
Study Director: Xuezhang Duan, Director The fifth medical center of PLA general hospital
Study Director: Kaixian Zhang, Director Tengzhou Central People's Hospital
Study Director: Zuping Lian, Director Guangxi Ruikang Hospital
Study Director: Zhe Ji Peking University Third Hospital
Study Director: Jing Sun The fifth medical center of PLA general hospital
Publications of Results:
Other Publications:
王俊杰,黄毅,冉宝强.放射性粒子组织间种植治疗肿瘤临床应用的可行性IJ]. 中国微创外科杂志.2003.3:148.149.
王忠敏,陈克敏,金冶宁等.CT 引导下植入 125I 粒子放射性粒子治疗胰腺癌的疗效观 察[J].中国肿瘤临床,2009,36:65-69.
朱永强,陈俊英,郭剑锋.CT 引导下 125I 粒子植入治疗晚期胰腺癌的临床疗效分析[J]. 介入放射学杂志,2011,20(4):283-286
盖宝东,舒振波,丁大勇等.125I放射性粒子治疗胰腺癌[J].中国普外基础与临床杂 志.2007.14(5):582-583.
熊炯忻,黄鹏,王春友.125I粒子组织间植入治疗局部进展期胰腺癌42例[J].中国肿 瘤临床,2005.32(23):1352一1355.
李振家,肖连祥,胰腺癌CT导引近距离放疗穿刺入路选择技术及策略[J].当代医学. 2009.1 5(29):543-546.

Layout table for additonal information
Responsible Party: Peking University Third Hospital
ClinicalTrials.gov Identifier: NCT03964064    
Other Study ID Numbers: BYSY-CKSI-PC
First Posted: May 28, 2019    Key Record Dates
Last Update Posted: July 19, 2019
Last Verified: May 2019
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Product Manufactured in and Exported from the U.S.: Yes
Keywords provided by Peking University Third Hospital:
Pancreatic Cancer Non-resectable
I125 seed implantation
Stereotactic radiotherapy
Additional relevant MeSH terms:
Layout table for MeSH terms
Pancreatic Neoplasms
Digestive System Neoplasms
Neoplasms by Site
Neoplasms
Endocrine Gland Neoplasms
Digestive System Diseases
Pancreatic Diseases
Endocrine System Diseases