Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Capnogram and Fluid Responsiveness

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT03788707
Recruitment Status : Recruiting
First Posted : December 28, 2018
Last Update Posted : June 19, 2019
Sponsor:
Information provided by (Responsible Party):
Efrain Riveros Perez, MD, Augusta University

Brief Summary:

Predicting fluid responsiveness in critically ill patients is of paramount importance. It can help define an adequate fluid balance. Overzealous fluid administration is poorly tolerated and has been associated with poor outcomes but so has insufficient administration. Currently available predictors of fluid responsiveness rely on invasive monitors and require patients to be on mechanical ventilation. It is thus important to develop non invasive novel methods to assess fluid responsiveness to provide an accurate management for a favorable outcome. We propose a readily available non-invasive method that relies on improvement of the ventilation perfusion mismatch as recorded by end tidal CO2.

Ventilation of physiologic dead space is part of a spectrum of mismatch between ventilation and perfusion of the lungs. The extent of pulmonary dead space varies depending on factors affecting pulmonary perfusion (e.g. pulmonary capillary hydrostatic pressure) and alveolar pressure (e.g. positive pressure ventilation). Compromised pulmonary capillary perfusion can lead to ventilation-perfusion mismatch in a patient with clear conductive airway and adequate alveolar oxygen pressure. Alveolar dead space results in decreased CO2 exchange that translates into lower levels of expired CO2.

Stroke volume of the right ventricle is a major determinant of the pulmonary capillary perfusion. Right ventricular cardiac output can be increased by passive lower limb elevation maneuver, which ultimately results in improvement of the ventilation to perfusion ratio. This effect leads to a higher participation of perfused (and ventilated) alveolar units in gas exchange and narrowing of the gradient between arterial and expired CO2 concentration. Performing a passive leg raising (PLR) maneuver leads to stroke volume enhancement in both healthy patients and in those experiencing hemodynamic instability. Responsiveness to PLR can be assessed by different methods including echocardiography and pulse pressure variation. Left ventricular cardiac output (LVCO) can be easily measured by transthoracic echo and be used as a surrogate of right ventricular preload changes. LVCO can thus be used to assess the fluid responsiveness of PLR and the effects of on end tidal CO2 that ensue.

We propose this study to test the hypothesis that expired CO2 is a reliable predictor of fluid responsiveness after performance of the PLR maneuver, based on the assumption that increasing right ventricular output causes a reduction of the ventilation to perfusion ratio, leading to increased levels of expired CO2. T


Condition or disease Intervention/treatment Phase
Healthy Blood Pressure Other: Passive leg raising Not Applicable

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 220 participants
Intervention Model: Single Group Assignment
Intervention Model Description: Volunteers will lay flat with a face mask breathing room air while expired CO2 is measured. After 30 seconds, legs will be passively raised for 3 minutes. Changes in expired CO2 before and after leg raising will be compared.
Masking: None (Open Label)
Primary Purpose: Diagnostic
Official Title: Performance of CO2 Changes to Predict Fluid Responsiveness in Spontaneously Breathing Volunteers
Actual Study Start Date : May 1, 2019
Estimated Primary Completion Date : December 1, 2019
Estimated Study Completion Date : December 1, 2019

Arm Intervention/treatment
Experimental: Passive leg raising
Passive leg raising for 3 minutes after 20 seconds of lying flat
Other: Passive leg raising
After 30 seconds of lying flat, volunteers will have passive leg raising to 45 degrees. Expired CO2 will be measured via a face mask before and after leg raising.




Primary Outcome Measures :
  1. Expired CO2 [ Time Frame: 10 minutes ]
    Area under the curve of a capnogram tracing will be measured in milimiters


Secondary Outcome Measures :
  1. Mean arterial pressure [ Time Frame: 10 minutes ]
    Mean arterial pressure in mmHg measured by non invasive oscillometer

  2. Heart rate [ Time Frame: 10 minutes ]
    beats per minute measured by non invasive plethysmography



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Criteria

Inclusion Criteria:

  • Age older than 18 years

Exclusion Criteria:

  • Cardiovascular and respiratory disease reported by the participant

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03788707


Contacts
Layout table for location contacts
Contact: Efrain Riveros Perez, MD 3304074681 eriverosperez@augusta.edu

Locations
Layout table for location information
United States, Georgia
Augusta University Recruiting
Augusta, Georgia, United States, 30912
Contact: Steffen Meiler, MD    706-721-3671    smeiler@augusta.edu   
Sponsors and Collaborators
Augusta University

Layout table for additonal information
Responsible Party: Efrain Riveros Perez, MD, Assistant Professor. Department of Anesthesiology, Augusta University
ClinicalTrials.gov Identifier: NCT03788707     History of Changes
Other Study ID Numbers: 1368341
First Posted: December 28, 2018    Key Record Dates
Last Update Posted: June 19, 2019
Last Verified: June 2019
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: Undecided

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No