Working...
ClinicalTrials.gov
ClinicalTrials.gov Menu

Development of a Morphine Pharmacokinetic and Pharmacodynamic Model for the Neonatal Population

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
ClinicalTrials.gov Identifier: NCT03035578
Recruitment Status : Unknown
Verified January 2017 by Andrew James, The Hospital for Sick Children.
Recruitment status was:  Not yet recruiting
First Posted : January 30, 2017
Last Update Posted : January 30, 2017
Sponsor:
Information provided by (Responsible Party):
Andrew James, The Hospital for Sick Children

Brief Summary:
This research aims to study what the baby's body does with morphine and how morphine works in the baby's body. One hundred newborn babies will be enrolled in this study. With a better understanding of the drug doctors and nurses will have more information and better administer the drug in case of pain, stress or discomfort.

Condition or disease Intervention/treatment Phase
Pain Drug Effect Drug: Morphine Phase 1 Phase 2

Detailed Description:

Critically ill immature preterm infants experience multiple noxious stimuli while receiving care in the Neonatal Intensive Care Unit (NICU). These noxious stimuli include, but are not limited to: venipuncture; insertion of intravenous and arterial catheters; suctioning of the nose, mouth and oropharynx; endotracheal intubation for mechanical ventilation; insertion of chest drains; repositioning and other types of patient manipulation. The delivery of optimal doses of analgesics for these noxious stimuli is a major challenge due to the lack of knowledge about drug disposition and its effects in this patient population.

Morphine is the commonest analgesic used in the NICU. The Premature Infant Pain Profile (PIPP) is used to quantify pain in the NICU1. This objective score, which combines physiological and behavioural variables defining levels of discomfort, is used as a guide for the use of morphine in newborn infants. Multidimensional pain assessment tools, such as PIPP, can easily identify behaviour in healthy infants undergoing painful events, however, its efficiency is questionable when applicable to critically ill premature infants with neurological impairment, where the pain processing and modulation may be altered. Pharmacokinetics/Pharmacodynamics (PKPD) models can be used to quantitatively describe and predict drug disposition in the blood and the target organ (e.g., brain) in relation to doses and patient characteristics. Although there has been a global effort to describe morphine plasma levels in this population using a pharmacokinetic modelling approach2-5, PKPD model development has not been reported. The study of morphine pharmacokinetics to determine the optimal dose for balancing analgesia/sedation together with the design of pharmacodynamic model for morphine may provide a better understanding of nociception/pain profile based on the physiological variables of immature infants. Moreover, the PKPD model may be used to achieve optimal therapeutic effects through individualised model-based dose selection. Objective: This study is composed by four main objectives:

  1. First: Define target morphine plasma and brain concentrations. To this end, we will develop a morphine PKPD model based on population PK characteristics and morphine effects captured by functional readout of central nervous system function;
  2. Second: Develop an opportunistic sampling method for fragile populations based on saliva sampling;
  3. Third: Compare pharmacokinetic parameters calculated from saliva with plasma sample;
  4. Fourth: Application of the morphine PKPD model for prediction of optimal morphine dosing in individual patients using the Bayesian framework of model refinement.

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 100 participants
Intervention Model: Single Group Assignment
Masking: None (Open Label)
Primary Purpose: Basic Science
Official Title: Development of a Morphine Pharmacokinetic and Pharmacodynamic Model for the Neonatal Population
Estimated Study Start Date : June 1, 2017
Estimated Primary Completion Date : June 1, 2018
Estimated Study Completion Date : June 1, 2019

Resource links provided by the National Library of Medicine


Arm Intervention/treatment
Experimental: Morphine Blood and Saliva sampling

The infants will receive a 50 mcg/kg loading dose of morphine followed by a constant infusion.Morphine Injection: 10mg/mL, 1mL ampoules.Two strengths of stock syringes:

a)patients <1.5kg, morphine 0.5mg/25mL; b)patients 1.5kg to <5kg, morphine 1mg/25mL.

Time blood samples will be collected for measurement of whole blood concentration of morphine in 24h. Total morphine, morphine-3-glucuronide and morphine-6-glucuronide concentrations; volume of blood required is 0.25 ml. Sparse sampling strategy will be used for those neonates < 1250; total volume of blood required is 0.50 ml. Frequent sampling strategy will be used for those neonates ≥ 1250 gm; total volume of blood required is 0.50 ml.Saliva samples will be collected at 10 and 30 minutes and at 6, 12 and 24h after morphine infusion started.100 uL of saliva, captured using a collection swab.

Drug: Morphine
Sampling blood for development of Morphine Pharmacokinetic/Pharmacodynamic Model for Neonatal Population

Drug: Morphine
Sampling saliva for development of Morphine Pharmacokinetic/Pharmacodynamic Model for Neonatal Population




Primary Outcome Measures :
  1. Target Morphine Plasma Concentration [ Time Frame: 12 months (blood sampling and modeling) ]
    Sparse sampling coupled with population (mixed effects) method will be used to design the morphine pharmacokinetics phase. This method captures pharmacokinetics data from many subjects (learning about population), which are based on a relatively few number of samples per patient (learning about individual characteristics considering the large number of samples).Population pharmacokinetic parameters will be estimated using a non-linear mixed effects modelling with NONMEM software.


Secondary Outcome Measures :
  1. Brain Morphine Concentrations [ Time Frame: 12 months (a-eeg collection and modeling) ]
    The drug effect will be design using the sigmoid modelling. The effect of drugs modeled by relating drug effect to the drug concentration (obtain in the primary outcome). The pain scores and amplitude-integrated electroencephalography (aEEG) will be used as markers of drug effect on the central nervous system for the development of the pharmacodynamic model. The effect-site concentration will be validated by comparing the predicted time of peak effect with the time of peak effect of aEEG effect. Heart rate, respiratory rate, blood oxygen saturation, and blood pressure will be captured continuously through neonatal computational platform with the intent to investigate, other pharmacodynamic relationship using the sigmoid modelling.



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   24 Weeks to 42 Weeks   (Child)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Criteria

Inclusion Criteria:

  • Gestational age > 24 completed weeks.
  • Clinically prescribed to commence a continuous morphine infusion.

Exclusion Criteria:

  • Gestational age < 24 completed weeks.
  • Critically ill infant unlikely to survive for more than 72 hours.
  • Prolonged fetal exposure to morphine, any other narcotic, or methadone, as a consequence of maternal use of the drug.
  • Any postnatal exposure to morphine during the 72 hours prior to the commencement of the second morphine infusion.
  • Neonates with impaired cardiac, hepatic or renal functioning as defined by clinical signs of impaired perfusion, abnormal liver function tests, or an elevated serum creatinine.
  • Neonates with seizures.
  • The attending neonatologist considers that participation in the study is contraindicated.

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03035578


Contacts
Layout table for location contacts
Contact: Andrew James, MD 416.813.6991 andrew.james@sickkids.ca
Contact: Nadja Bressan, PhD 416.813.6345 ext 206347 nadja.bressan@sickkids.ca

Sponsors and Collaborators
The Hospital for Sick Children

Layout table for additonal information
Responsible Party: Andrew James, Interim Head, Division of Neonatology, The Hospital for Sick Children
ClinicalTrials.gov Identifier: NCT03035578     History of Changes
Other Study ID Numbers: 1000053067
First Posted: January 30, 2017    Key Record Dates
Last Update Posted: January 30, 2017
Last Verified: January 2017
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No

Keywords provided by Andrew James, The Hospital for Sick Children:
Pharmacokinetics
Pharmacodynamics
Morphine
Neonatal

Additional relevant MeSH terms:
Layout table for MeSH terms
Morphine
Analgesics, Opioid
Narcotics
Central Nervous System Depressants
Physiological Effects of Drugs
Analgesics
Sensory System Agents
Peripheral Nervous System Agents