Study: Proper identification of ribs underlying the rhomboid major and trapezius muscles using palpation.

Dated 8/19/19, originally created 6/18/2015

NCT number: 0084226

Principle Investigator: Dan Cushman, MD

Co-Investigators:
- A. Michael Henrie, DO
- Alexandra Flis, MD

Project summary: This study will determine the accuracy of medical practitioners in locating the posterior ribs underlying the rhomboid major and trapezius muscles in individuals of different Body mass indices.
Project description:

Rationale:

Pneumothorax, which is a collapse of the lung, can result from trigger point injections to the muscles in close proximity to the ribs such as rhomboid major, rhomboid minor, trapezius, diaphragm, shoulder muscles, and neck muscles, where the needle is penetrated too deep and passes the pleura. Though the reported incidence of pneumothorax has been reported to be around 1 in 100,000 (Witt 2009, Melchart 2004), there is some thought that pneumothoraces may be underreported for two reasons - patients may have a subclinical pneumothorax or fail to report to their practitioner about shortness of breath or dry cough.

The rhomboid major muscle originates on the spinous processes of the T2-T5 vertebra and inserts on the medial border of the scapula. There has been a study to address the appropriate depth for needle insertion when dry needling or injecting the rhomboid major (Seol 2014). To our knowledge, there have been no studies to investigate a practitioner’s ability to properly identify rib location with palpation. In fact, a recent case report outlines a pneumothorax caused by an extremely experienced practitioner inserting a needle into the rhomboid (Cummings 2014). Use of an electromyography (EMG) needle for trigger point injection has also been described to help limit the danger of pneumothorax (Botwin 2007). Additionally, ultrasound has been used as a modality to identify safe needling of the diaphragm (Amirjani 2012).

Electromyographers frequently need to insert a needle into the same muscles. The rhomboid major, which is innervated by the dorsal scapular nerve, is one of just a few muscles that is innervated almost exclusively by the C5 nerve root, which can help differentiate levels of a nerve root lesion. For the same reasons as dry needling, improper needle placement of an EMG needle can cause a pneumothorax.
When performing dry needling or EMG of the rhomboid major muscle, proper identification of the ribs provides an anatomic landmark to prevent needle insertion into the pleural space (Seol 2014, Travell/Simons). The technique is often called “blocking,” where the practitioner places the index finger in the intercostal space above or below a rib, with the middle finger on the intercostal space on the other side of the rib. This theoretically means that if a needle is inserted too deeply, it will only hit the rib and not go into the intercostal space. However, to our knowledge, this has never been investigated. Anecdotally, this is difficult to perform on someone with a large body habitus.

Objective:
1. Identify the accuracy of palpation guided identification of the ribs underlying the rhomboid major muscles.
2.

Subjects to study:

Inclusion criteria:
- Adults >18 years old

Main exclusion criteria:
- Prior surgery or scarring to the posterior aspect of the shoulder, which will make accurate localization of the rib using ultrasound difficult.

Methodology:

Subjects will be identified using inclusion criteria and consented. No personally identifiable patient information will be collected. The subject’s age, height, weight, and gender will be recorded. The patient will be positioned in the prone or seated position, as per the practitioner’s usual custom. The practitioner will then palpate to identify a posterior rib location under the rhomboid major. They will then place a single dot over what they perceive as the midline of the rib using a felt tip, skin-marking pen.

A second practitioner, trained in ultrasound identification, will then use a linear probe on an ultrasound machine to obtain a clear view of the ribs in a perpendicular alignment over the placed skin marking. The linear probe has a line signifying the middle of the probe, which will be placed directly over the center of the skin marking. This will be done with the rib in short axis to the ultrasound probe. Images will be saved for review, and will be analyzed for skin-to-rib depth as well as the rib location (e.g. middle 50%, outer 25% of the rib).

Data management and analysis:
Data will be collected in an Excel spreadsheet file. As there will be no personally-identifiable information contained, it will not be password-protected. Our primary outcome will be a simple percentage of accurate vs. inaccurate rib identifications. Secondarily, data will be examined for normality by Kolmogorov-Smirnov testing. Logistic regression testing will be used to examine a relationship between BMI & accuracy and between depth & accuracy.

Sample size needed for the study:
As no data has been published on this study, we are using clinical opinion. Anecdotally, we feel that on patients with a normal BMI, the inaccuracy rate will be almost zero. However, in obese subjects, this value is probably much larger. We would estimate that 10% of overweight individuals would have inaccurate readings. For a p value of 0.05, this would require 46 overweight subjects. If we make the assumption that half of subjects are overweight, we should recruit 92 total subjects.

Ethical considerations:
Recruitment plans: Participants will be recruited for participation from patients in our musculoskeletal clinics at the University of Utah.
Compensation: None
Risks of the study: There is minimal risk associated with participation in the study. There is a very low risk of a local reaction to the skin-marking ink or ultrasound gel.
Benefits of the study: There is no benefit to the participants in this study.
Informed consent: Informed consent will be obtained
IRB approval: ***

References:

