Protocol

Tenecteplase in Wake-up Ischaemic Stroke Trial (TWIST)

A randomised-controlled trial of thrombolytic treatment with tenecteplase for acute ischaemic stroke upon awakening

EudraCT number: 2014-000096-80
Sponsor’s protocol code number: 01

Sponsor:
University Hospital of North Norway, NO-9038 Tromsø, Norway
Telephone number: +47 77626000

Trial Coordinating Centre:
Brain and Circulation Research Group, Department of Neurology, University Hospital of North Norway, and Faculty of Health Sciences, University of Tromsø
Address: Department of Neurology, University Hospital of North Norway, NO-9038 Tromsø, Norway
Telephone number: +47 77627120
Signature page

Sponsor

Director of Research (signature and date)
University Hospital of North Norway

Trial Coordinating Investigator and Head of Brain and Circulation Research Group
(signature and date)
University Hospital of North Norway and University of Tromsø

Principal investigator

I have read this protocol and agree that it contains all the necessary details for carrying out the study. I will conduct the study as outlined herein and will complete the study within the time designated.

I will provide copies of the protocol and all pertinent information to all individuals responsible to me who assist in the conduct of the study. I will discuss this material with them to ensure that they are fully informed regarding the study intervention and the conduct of the study.

Principal investigator (signature and date)

Name of institution
1. Contents

1. Contents ... 3
2. Summary ... 5
3. Background and rationale ... 5
 3.1 Introduction ... 5
 3.2 Potential benefits and harms of tenecteplase 5
 3.3 Multi-modal CT for the selection of patients to thrombolytic therapy 7
4. Trial design, questions and hypotheses 8
 4.1 Trial design ... 8
 4.2 Study questions and objectives 8
 4.3 Hypotheses ... 8
5. Study population .. 9
 5.1 Inclusion criteria .. 8
 5.2 Exclusion criteria ... 9
6. Patient screening .. 9
 6.1 Patient screening .. 9
 6.2 Non-contrast CT and CT angiography for patient screening before randomisation 10
 6.3 CT perfusion at selected centres before randomisation (substudy) 10
 6.4 Routine use of MRI before randomisation 10
7. Patient inclusion ... 10
 7.1 Patient information and consent/assent 10
 7.2 Randomisation procedure and recording of baseline characteristics 10
8. Trial treatment ... 11
 8.1 Open-label tenecteplase plus best standard care 11
 8.2 Best standard care alone ... 11
 8.3 Best standard care and other treatments 11
 8.4 Management of serious adverse events related to study treatment 11
9. Visits and examinations from trial entry till end of follow-up 12
 9.1 Visits and examinations during stay in hospital 12
 9.2 Centralised follow-up via telephone or mail at 3 months (90 ± 7 days) 12
 9.3 Long-term follow-up by record linkage with central registries 12
10. Effect variables ... 13
 10.1 Primary effect variable .. 13
 10.2 Secondary effect variables 13
11. Analysis and statistical considerations 13
 11.1 Estimation of sample size 13
 11.2 Statistical analyses ... 14
12. Trial conduct and practices/procedures 15
 12.1 Compliance with regulations and guidelines 15
 12.2 Data protection .. 15
 12.3 Ethical conduct ... 15
 12.4 Liability ... 15
 12.5 Recording and reporting of serious adverse events 155
 12.6 Event adjudication .. 16
 12.7 Monitoring of data quality 16
 12.8 Handling of protocol violations and protocol amendments 16
 12.9 Monitoring of effectiveness and safety 16
 12.10 Audit and inspection .. 17
 12.11 Handling of patient data 17
 12.12 Handling of the list of treatment codes 17
 12.13 Screening logs .. 17
 12.14 Financial conduct ... 17
 12.15 Publication and data sharing policy 17
 12.16 User involvement ... 17
13. Central trial organisation ... 17
 13.1 Sponsors and funding bodies 17
13.2 Trial Coordinating Centre...18
13.3 Trial Statistical Centre...18
13.4 Executive Committee...18
13.5 Imaging Scientific Committee..18
13.6 Trial Steering Committee...18
13.7 Data Monitoring Committee...18
13.8 Event Adjudication Committee...18

14. Time table and end of trial ...18
15. References ..19
16. Appendix ...23
 16.1 On-going studies of thrombolytic treatment for wake-up stroke23
 16.2 Definitions of clinical events...23
 16.2.1 Serious adverse events..23
 16.2.2 Death ...23
 16.2.3 Recurrent stroke ..24
 16.2.4 Symptomatic intracranial haemorrhage24
 16.2.5 Asymptomatic intracranial haemorrhage24
 16.2.6 Neurological deterioration due to index stroke23
 16.2.7 Symptomatic intracranial haemorrhage24
 16.2.8 Asymptomatic intracranial haemorrhage24
 16.3 Abbreviations ...25

17. Summary of changes ...25
 17.1 Protocol version/date 160323 ...25
 17.2 Protocol version/date 160421 ...26
 17.3 Protocol version/date 170412 ...26
 17.4 Protocol version/date 180410 ...26
 17.5 Protocol version/date 180704 ...26
 17.6 Protocol version/date 200131 ...26
 17.7 Protocol version/date 200917 ...26
2. Summary

Tenecteplase in Wake-up Ischaemic Stroke Trial (TWIST) is a randomised-controlled, open-label trial of thrombolytic treatment with tenecteplase for acute ischaemic stroke upon awakening.

The trial aims to answer the following questions:

- Can thrombolytic treatment with tenecteplase given within 4.5 hours of wake-up reduce the risk of poor functional outcome at 3 months?
- Can findings on non-contrast CT and CT angiography (and CT perfusion at selected centres) identify patients who benefit from such treatment, compared to patients without such findings?

Patients are eligible if they have ischaemic stroke causing measurable neurologic deficits, and can be given tenecteplase within 4.5 hours after awakening. Patients will undergo brain CT and CT angiography (if possible) to exclude large infarction or other contraindications to thrombolytic treatment. Non-contrast CT and CT angiography (if possible) will be repeated on day 2.

Patients will be allocated to tenecteplase 0.25 mg/kg as a bolus (maximum dose 25 mg) or to control. The primary effect variable is functional outcome at 3 months, as measured by the modified Rankin Scale (mRS).

The target is to include a total of 600 patients from centres in Norway, Sweden, Denmark, Finland, Estonia, Lithuania, Latvia, Switzerland, New Zealand and the United Kingdom. The sponsor of the trial is University Hospital of North Norway.

3. Background and rationale

3.1 Introduction

Thrombolytic treatment with recombinant tissue plasminogen activator (rt-PA) given within 4.5 hours of onset improves clinical outcome after ischaemic stroke, despite an increased risk of intracranial haemorrhage.\(^1\)\(^2\) Patients who have new stroke symptoms when they wake up from sleep (“wake-up stroke”) are excluded for such treatment, because the time of stroke onset is unknown. About one in five strokes occur during sleep,\(^3\)\(^5\) and it is unknown whether patients with wake-up stroke will benefit from thrombolytic treatment.

There are reasons to expect that patients with wake-up stroke will benefit from treatment. Several studies have shown that the onset of stroke during sleep is close to awakening,\(^6\)\(^7\) and that patients with wake-up stroke share many clinical and radiological findings with patients with stroke duration less than 4.5 hours.\(^8\)\(^-\)\(^13\) Studies have also shown that thrombolytic treatment is safe in patients with wake-up stroke up to 4.5 hours from wakening,\(^14\)\(^-\)\(^19\) and recently the WAKE-UP trial showed benefit of treatment with alteplase in patients selected based on DWI/FLAIR mismatch on MRI.\(^20\) In a Cochrane systematic review\(^21\) we have identified only one completed, small randomised-controlled trial of only nine patients.\(^22\) Two trials have recently been completed (EXTEND,\(^23\) THAWS,\(^24\) and one is on-going (WASSABI,\(^25\) see Appendix). All these three trials use alteplase, and all use advanced imaging techniques for selection of patients. We will use a different strategy, and perform a large trial of tenecteplase, using a pragmatic study design, without exclusion of patients based on MRI findings. The trial will be complementary to the other trials, and is planned in advance to be included in our Cochrane meta-analysis of all trials of thrombolytic treatment for wake-up stroke, so that smaller, but still worthwhile effects can be detected that may be missed by the individual trials.

3.2 Potential benefits and harms of tenecteplase

Pharmacological properties
Tenecteplase is an alteplase molecule that is genetically engineered to have pharmacological advantages over alteplase: it has a 14-fold greater fibrin specificity and a very rapid onset of action compared to alteplase, has a longer half-life, and can be given as a single bolus, whereas alteplase must be given as a continuous infusion over one hour.26,27 Tenecteplase also has a smaller effect on plasma fibrinogen levels,28 which is beneficial for avoidance of intracranial haemorrhage,29 and weaker pro-thrombotic effects.30-32

Data from pre-clinical studies

Animal models have shown that tenecteplase acts faster33 and more potent33-35 than alteplase, and that tenecteplase produces a more rapid and complete recanalisation of occluded arteries.31,34,36 Models have also shown that experimentally induced infarcts were less frequently converted to haemorrhage with tenecteplase than with bio-equivalent doses of alteplase36,37 and that the risk peripheral or major haemorrhage31 and intracranial haemorrhage36-41 was equal to or lower than the risk with alteplase.

Data from clinical studies

Tenecteplase is preferred over alteplase for treatment of myocardial infarction, because it has lower risk of bleeding complications, and because of the pharmacological advantages listed above.42

There has also been three small randomised-controlled trials of tenecteplase vs. alteplase in acute ischaemic stroke.45,47,48 Meta-analysis of these trials with a total of 283 patients have shown that 76/178 patients (43%) patients given tenecteplase (doses ranging from 0.1 to 0.4 mg/kg) achieved good functional outcome (mRS score 0-1), compared to 33/105 patients (31%) patients given alteplase (odds ratio (OR) 1.39, 95% confidence interval (CI) 0.82-2.36, Figure 1).

Figure 1. Good functional outcome (mRS score 0-1) at three months

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Tenecteplase (any dose) Events</th>
<th>Alteplase Events Total</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTTEST 2014</td>
<td>13</td>
<td>47 10 49 31.2%</td>
<td>1.49 [0.58, 3.83]</td>
<td></td>
</tr>
<tr>
<td>Clarke Hailey 2010</td>
<td>36</td>
<td>81 13 31 39.0%</td>
<td>1.11 [0.48, 2.56]</td>
<td></td>
</tr>
<tr>
<td>Parsons 2012</td>
<td>27</td>
<td>50 10 25 29.2%</td>
<td>1.76 [0.66, 4.67]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>178</td>
<td>105 100.0%</td>
<td>1.39 [0.82, 2.36]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>76</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.00; CHI^2 = 0.53, df = 2 (P = 0.77); I^2 = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.23 (P = 0.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There was also a non-significant lower risk of symptomatic intracranial haemorrhage in patients given tenecteplase (Figure 2). The risks were 7/131 (5%) in patients given tenecteplase and 4/56 (7%) in patients given alteplase (OR 0.71, 95% CI 0.11-4.42). ATTEST 2014 did not provide data on symptomatic intracranial haemorrhage.

Figure 2. Symptomatic intracranial haemorrhage

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Tenecteplase (any dose) Events</th>
<th>Alteplase Events Total</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarke Hailey 2010</td>
<td>5</td>
<td>81 1 31 45.1%</td>
<td>1.97 [0.22, 17.60]</td>
<td></td>
</tr>
<tr>
<td>Parsons 2012</td>
<td>2</td>
<td>50 3 25 54.9%</td>
<td>0.31 [0.05, 1.96]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>131</td>
<td>56 100.0%</td>
<td>0.71 [0.11, 4.42]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.69; CHI^2 = 1.64, df = 1 (P = 0.20); I^2 = 39%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 0.37 (P = 0.71)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There was no significant difference in the risk of death at three months (Figure 3). In total, 24 of the 178 patients (13%) given tenecteplase and 17 of the 123 patients (14%) given alteplase were dead at three months (OR 1.00, 95% CI 0.52-1.95).
Another meta-analysis comparing different doses of tenecteplase concluded that 0.25 mg/kg is the preferred dose over alteplase. There are also observational studies that support this conclusion. Furthermore, an analysis of pooled data for tenecteplase 0.25 mg/kg compared to alteplase 0.9 mg/kg showed trends in favour of tenecteplase. Tenecteplase had higher odds than alteplase for neurological improvement at 24 hours (OR 3.3, 95% CI 1.5-7.2, p=0.09), excellent clinical outcomes at three months (OR 1.9, 95% CI 0.8-4.4, p=0.3), and good clinical outcomes at three months (OR 1.9, 95% CI 0.5-7.2, p=0.4); also, tenecteplase had a lower risk of brain haemorrhage than alteplase (OR 0.3, 95% CI 0.2-1.8, p=0.4). Recently, NORTEST showed no difference in functional outcome at three months between patients with ischaemic stroke treated with tenecteplase 0.4 mg/kg or alteplase 0.9 mg/kg within 4.5 hours and the EXTEND-IA TNK trial showed that tenecteplase 0.25 mg/kg was superior to alteplase 0.9 mg/kg in improving recanalisation and functional outcome at three months when given within 4.5 hours and prior to intra-arterial intervention. Other trials of tenecteplase in patients with acute ischaemic stroke are ongoing: TASTE, TEMPO-2 and ATTEST2.

Conclusion: Potential benefits and harms of tenecteplase

The bolus administration and the very rapid onset of action makes tenecteplase an attractive option for patients with wake-up stroke, because the time to recanalisation of an occluded cerebral artery can be reduced by up to one hour, compared to alteplase. Available data from pharmacological in-vitro studies, pre-clinical studies and clinical studies also indicate that tenecteplase 0.25 mg/kg is at least as safe and at least as effective as alteplase for the treatment of acute ischaemic stroke. The favourable profile of tenecteplase seen in these studies and in studies of acute myocardial infarction, in combination with the pharmacological characteristics and advantages of bolus administration, provides a good rationale for testing tenecteplase in patients with wake-up stroke.

3.3 Multi-modal CT for the selection of patients to thrombolytic therapy

The WAKE-UP trial and three other trials of thrombolytic treatment for wake-up stroke used advanced imaging techniques for selection of patients. Two trials (WASSABI and EXTEND) use CT or MRI perfusion techniques to identify patients with ischaemic penumbra. The penumbra is an area of ischaemic, but still viable brain tissue surrounding the core of a cerebral infarction, which is assumed to be salvageable if blood flow can be promptly restored. The WAKE-UP trial and the THAWS used DWI/FLAIR mismatch on MRI to select patients. Infarct changes on DWI are thought to represent cytotoxic oedema and cannot be identified until a few hours after onset. Findings suggestive of ischaemic stroke on DWI, but absence of such findings on FLAIR (DWI/FLAIR mismatch), may therefore identify patients with a short time since onset of cerebral infarction. Demonstration of penumbra or DWI/FLAIR mismatch identifies patients with a good prognosis, but it does not necessarily identify patients with a better response to thrombolytic treatment than other patients. Only one randomised-controlled trial (MR RESCUE, of intra-arterial interventions) has examined the value of advanced imaging for patient selection, but did not find a better effect of therapy in patients with penumbra, than in patients without penumbra.
On the contrary, there is a risk that selection of patients based on such techniques will exclude patients from receiving an effective treatment. First, it is possible that patients without these specific radiological findings benefit equally well as those who are selected for participation in these trials, as indicated in a recent study. Second, the techniques are far from perfect in characterising patients, for example, DWI/FLAIR mismatch can be absent in as many as 40% of patients with known stroke duration of less than three hours. Third, these MRI techniques are time-consuming and are not available in the emergency setting in many hospitals, which means that time to thrombolytic treatment will be increased, and that some patients will be denied thrombolytic treatment altogether.

We will therefore base patient inclusion on wider and more pragmatic criteria, such as time since wake-up in combination with accepted CT exclusion criteria. Inclusion based on wider criteria will avoid excluding a large number of patients that might benefit from treatment. This will make the results applicable to patients that are encountered in everyday clinical practice, and will dramatically increase the proportion of stroke patients who can be treated. Patient can be included based on non-contrast CT alone, but CT angiography can be routinely done in many hospitals, can be done without significant delay, and can give information that will help in the selection of patients with wake-up stroke for thrombolytic treatment.

4. Trial design, questions, and hypotheses

4.1 Trial design
Randomised-controlled, open-label trial of tenecteplase in patients with acute ischaemic stroke upon awakening.

4.2 Study questions and objectives
The objectives of the trial is to answer the following questions, for patients who have an acute ischaemic stroke upon awakening:
- Can thrombolytic treatment with tenecteplase given within 4.5 hours of wake-up reduce the risk of poor functional outcome at 3 months?
- Can findings on non-contrast CT and CT angiography (and CT perfusion at selected centres) identify patients who benefit from such treatment, compared to patients without such findings?

4.3 Hypotheses
- Thrombolytic treatment with tenecteplase will reduce the risk of poor functional outcome at 3 months. For details about size of effect, see Statistical calculations, below.
- CT angiography and CT perfusion identifies patients who benefits more from tenecteplase than other patients

5. Study population
Patients with acute ischaemic stroke upon awakening who can be given treatment within 4.5 hours after awakening.

5.1 Inclusion criteria
- Stroke symptoms on awakening that were not present before sleep
- Clinical diagnosis of stroke with limb weakness with NIHSS score ≥3, or dysphasia
- Treatment with tenecteplase is possible within 4.5 hours of awakening
- Written consent from the patient, non-written consent from the patient (witnessed by non-participating health care personnel), or written consent from the nearest family member
5.2 Exclusion criteria

- Age <18 years
- NIHSS score >25 or NIHSS consciousness score >2, or seizures during stroke onset
- Findings on non-contrast CT that indicate that the patient is unlikely to benefit from treatment:
 - Infarction comprising more than >1/3 of the middle cerebral artery territory on non-contrast CT or CT perfusion
 - Intracranial haemorrhage, structural brain lesions which can mimic stroke (e.g. cerebral tumour)
- Active internal bleeding of high risk of bleeding, e.g.:
 - Major surgery, trauma or gastrointestinal or urinary tract haemorrhage within the previous 21 days, or arterial puncture at a non-compressible site within the previous 7 days
 - Any known defect in coagulation, e.g. current use of vitamin K antagonist with an INR >1.7 or prothrombin time >15 seconds, or use of direct thrombin inhibitors or direct factor Xa inhibitors during the last 24 hours (unless reversal of effect can be achieved by agents such as idarucizumab) or with elevated sensitive laboratory tests (such as aPTT, INR, platelet count, eucarin clotting time, TT, or appropriate factor Xa activity assays), or heparins during the last 24 hours or with an elevated aPTT greater than the upper limit of normal
 - Known defect of clotting or platelet function or platelet count below 100,000/mm³ (but patients on antiplatelet agents can be included)
 - Ischaemic stroke or myocardial infarction in previous 3 months, previous intracranial haemorrhage, severe traumatic brain injury or intracranial or intraspinal operation in previous 3 months, or known intracranial neoplasm, arteriovenous malformation or aneurysm
- Contraindications to tenecteplase, e.g., acute bacterial endocarditis or pericarditis; acute pancreatitis; severe hepatic dysfunction, including hepatic failure, cirrhosis, portal hypertension; active hepatitis; systemic cancer with increased bleeding risk; haemostatic defect including secondary to severe hepatic, renal disease; organ biopsy; prolonged cardiopulmonary resuscitation > 2 min (within 2 weeks)
- Persistent blood pressure elevation (systolic ≥185 mmHg or diastolic ≥110 mmHg), despite blood pressure lowering treatment
- Blood glucose <2.7 or >20.0 mmol/L (use of finger-stick measurement devices is acceptable)
- Pregnancy, positive pregnancy test, childbirth during last 10 days, or breastfeeding. In any woman of childbearing potential, a pregnancy test must be performed and the result assessed before trial entry
- Other serious or life-threatening disease before the stroke: severe mental or physical disability (e.g. Mini Mental Status score <20, or mRS score ≥3), or life expectancy less than 12 months
- Patient unavailability for follow-up (e.g. no fixed address)

6. Patient screening

6.1 Patient screening

All patients who are admitted with new stroke symptoms on awakening should be screened for inclusion into the trial. Patients will be evaluated for vital signs, physical examination, neurological status (NIHSS), ECG and CT with CT angiography (section 6.2). Routine blood tests will include blood glucose and prothrombin time/INR*, aPTT*, TT and/or eucarin clotting time if it is suspected the patient is taking direct thrombin inhibitors or direct factor Xa inhibitors.

*Although it is desirable to know the results of these tests before giving intravenous tenecteplase, fibrinolytic therapy should not be delayed while awaiting the results unless (1) there is clinical suspicion of a bleeding abnormality or thrombocytopenia, (2) the patient has received heparin or warfarin within 48 hours, or (3) the patient has received other anticoagulants/direct thrombin inhibitors or direct factor Xa inhibitors.
6.2 Non-contrast CT and CT angiography for patient screening before randomisation

All patients should be screened with non-contrast CT, and CT angiography should be performed, if possible. Findings on non-contrast CT shall only be used to exclude patients who are unlikely to benefit from treatment (See Exclusion criteria in Section 5). If other, advanced imaging examinations are used (see sections 6.3 and 6.4, below), findings on such examinations shall not influence the decision to include the patient, unless the results of such imaging show that the patient should or should not receive thrombolytic treatment, in the opinion of the investigator.

6.3 CT perfusion at selected centres before randomisation (substudy)

Some centres routinely use CT perfusion in patients with wake-up stroke, and these centres will be invited to participate in a substudy of CT perfusion. All CT scans taken in the trial will be sent to the Trial Co-ordinating Centre for central, blinded analysis.

6.4 Routine use of MRI before randomisation

Some centres routinely use MRI perfusion or MRI DWI/FLAIR in patients with wake-up stroke. These examinations are not part of the trial, but MRI examinations done of patients included into the trial shall be sent to the Trial Coordinating Centre for central, blinded analysis. Extra brain scanning (CT perfusion or MRI) must not delay treatment, and we will discourage extra scanning if randomisation is delayed more than 20 minutes.

7. Patient inclusion

7.1 Patient information and consent/assent

Written, informed consent will be sought from all eligible patients. If the patient can consent but cannot sign, non-written consent from the patient (witnessed by non-participating health care personnel) can be accepted. If the patient is unable to consent, his/her legal representative and/or next of kin can consent on the patient’s behalf depending on national legislation. The regulations governing these procedures may vary from jurisdiction to jurisdiction. The procedures for obtaining consent will therefore have to be approved for each jurisdiction, and will be described in separate standard operating procedures. It is noted that legal restrictions in some EU Member States prevent performing any trial-specific interventions (e.g. treatment or trial-specific diagnostic procedures without obtaining prior informed consent).

If a patient was unable to give consent at trial entry, but regains capacity to receive information and give consent, he/she will be given information as soon as possible and asked whether he/she is willing to continue his/her participation in the trial. The patient and his/her legal representative will be informed of the right to withdraw from the trial and object to the use of his/her data.

7.2 Randomisation procedure and recording of baseline characteristics

Patients will be randomly allocated to tenecteplase or control in a 1:1 ratio. Randomisation will be performed by central computer over the Internet. The investigators will record patient details via a secure web interface before randomisation takes place. Investigators may also contact the Trial Coordinating Centre via the 24-hours help-line.

The randomisation procedure will include a standard minimisation algorithm which will ensure that the treatment groups are balanced for key prognostic factors, such as sex, age, NIHSS score, stroke type (OCSP subgroup), delay to thrombolytic treatment, and use of antiplatelet drugs within the past 24 hours. To avoid predictable alternation of treatment allocation, and thus potential loss of allocation concealment, patients will be allocated with a probability of 0.80 to the
treatment group that would minimise the difference between the groups on the key prognostic factors.

8. Trial treatment
Patients will be randomly allocated to open-label tenecteplase plus best standard care or to best standard care alone.

8.1 Open-label tenecteplase plus best standard care
The total dose of tenecteplase is 0.25 mg per kg of body weight (maximum 25 mg). The dose shall be given as an intravenous bolus. Patients will be on bed rest in accordance with local routine following administration of tenecteplase.

After infusion, vital signs, neurological signs and blood pressure will be monitored every 15 minutes for two hours, then every 30 minutes for 6 hours, than 60 minutes until 24 hours from the start of treatment. Blood pressure should be maintained at or below 180/105 mmHg during the first 24 hours. Placement of intra-arterial catheters, indwelling bladder catheters, and nasogastric tubes shall be avoided for 24 hours if the patient can be safely managed without them. Venipunctures should be performed and monitored carefully.

8.2 Best standard care alone
Patients randomised to control shall not be given tenecteplase or any other thrombolytic agent.

8.3 Best standard care and other treatments
Both arms will receive best standard care, including intra-arterial interventions for proximal cerebral artery occlusion. 63 If the patient is given tenecteplase, then aspirin or other antiplatelet or anticoagulant drugs shall not be given until 24 hours after termination of infusion and after the control CT brain scan. If the patient was allocated to control, he/she will receive aspirin 300 mg as a loading dose as soon as possible after randomisation. After the first 24 hours the recommended daily dose of aspirin is 75 mg once daily in both the tenecteplase group and the control group. Best standard care during the first week also includes treatments to maintain normal homeostasis (temperature, blood glucose, hydration, nutrition), as well as lipid lowering and blood pressure lowering drugs, in accordance with clinical guidelines. Clinical examinations, including additional CT scans will be performed as clinically indicated.

8.4 Management of serious adverse events related to study treatment
The management of serious adverse events that can be related to treatment with tenecteplase will be guided by specific, detailed standard operating procedures. All patients with neurological deterioration will undergo emergency head CT. In case of a major bleeding (e.g. intracranial haemorrhage), antifibrinolytic agents or transfusion of cryoprecipitate, fresh frozen plasma or platelets may be indicated and should be considered. The investigator should institute any supplementary investigations of serious adverse events based on their clinical judgement of the likely causative factors. This may include seeking further opinion from a specialist in the field of the adverse event.
9. Visits and examinations from trial entry till end of follow-up

The duration of the follow-up period is 3 months. During this period, all patients should be treated according to standard clinical guidelines, at the discretion of the clinician. Table 2 gives an overview of all visits and examinations in the trial.

Table 2. Scheme for visits and examinations

<table>
<thead>
<tr>
<th></th>
<th>Days</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Clinical visit</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Routine blood analysis</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>CT + CT angiography (if possible)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>before randomisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT perfusion, at selected centres</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>CT + CT angiography (if possible)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24±6 hrs after randomisation</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Centralised follow-up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Day 1 is the day of entry into the trial. *Day 7 or day of discharge, whichever occurs first.

9.1 Visits and examinations during stay in hospital

Clinical visits: These will be performed on day 1 (at baseline) and day 7 (or on the day of discharge, whichever occurs first). NIHSS will be performed at both times. ECG will be performed on day 1. Clinical events will be recorded on day 7 (or on the day of discharge). Outcome assessors will be blinded to the assigned treatment group.

Routine blood analysis will be performed on day 1 (at baseline) and day 7 (or on the day of discharge, whichever occurs first). Tests on day 1 will include: haemoglobin, creatinine, blood glucose, platelets, prothrombin time/INR, aPTT, TT and/or eucarin clotting time if it is suspected that the patient is taking direct thrombin inhibitors or direct factor Xa inhibitors.

Non-contrast CT and CT angiography (if possible): All patients will undergo non-contrast CT and CT angiography (if possible) before randomisation, and again at 24±6 hours after randomisation. CT angiography at 24±6 hours will only be performed in patients with a positive finding on CT angiography before randomisation.

CT perfusion will be performed at selected centres.

9.2 Centralised follow-up via telephone or mail at 3 months (90 ±7 days)

At 90±7 days, the Trial Coordinating Centre will contact patients (or their carers) via telephone (alternatively, via postal mail), blinded to the treatment that the patients received. We may also need to contact the patients’ general practitioners and local hospitals to get information from the patients’ medical records. We will record information about clinical events, functional status (mRS), activities of daily living (BI), health-related quality of life (EuroQol), and cognitive status (MMSE, TICS-M).

9.3 Long-term follow-up by record linkage with central registries

We will collect data up to three years from trial entry, by using record linkage with data from central registries such as national patient registries and the cause-of-death registries in the participating countries.
10. Effect variables

10.1 Primary effect variable
Functional outcome (defined by the mRS) at 3 months

10.2 Secondary effect variables

Clinical events:
- Any intracranial haemorrhage during follow-up
- Symptomatic intracranial haemorrhage by SITS-MOST definition\(^66\)
- Symptomatic intracranial haemorrhage by IST-3 definition\(^1\)
- Parenchymal haemorrhage type 2\(^67\)
- Stroke progression during follow-up
- Recurrent ischaemic stroke during follow-up
- Major extra cranial bleeding
- Death from all cause during follow-up

Clinical events are defined in the Appendix.

Clinical outcomes:
- Favourable functional outcome at 3 months: mRS 0-1
- Good functional outcome at 3 months: mRS 0-2
- NIHSS score at 24 hours and day 7
- Change in NIHSS score from baseline to 24 hours and day 7
- Barthel Index score at 3 months
- EuroQol score at 3 months
- MMSE score at 3 months

Radiological outcomes
Radiological outcomes will be defined in a separate imaging protocol.

Health-economic variables:
Costs related to:
- Length of hospital stay
- Nursing home care after discharge
- Re-hospitalisations during first 3 months

11. Analysis and statistical considerations

11.1 Estimation of sample size
It is uncertain whether the difference in treatment effect between thrombolysed and non-thrombolysed wake-up stroke patients will be similar to that of stroke patients with known time of onset. We originally based our sample size estimation on the results of a Cochrane systematic review of the effect of rt-PA within 4.5 hours of stroke onset,\(^64\) assessed as a binary endpoint (favourable outcome mRS 0-2 versus mRS 3-6). As the primary endpoint in TWIST is mRS across the full ordinal scale (shift analysis), sample size estimation based on ordinal logistic regression analysis is more appropriate.

Longer time from stroke onset to treatment in wake-up stroke patients compared to patients with known symptom onset is anticipated and this is likely to weaken the treatment effect. However, recent trials on patients with wake-up strokes found similar and actually larger differences between thrombolysed and non-thrombolysed patients with wake-up stroke/unknown stroke onset time. In the largest randomized controlled trial on wake-up strokes, WAKE-UP, with favourable outcome defined as mRS 0-1, the difference between thrombolysed and non-thrombolysed patients was 11.5\%.\(^20\) The same difference of 11.5\% was also found in a recent meta-analysis of 6 observational studies on patients with unknown stroke onset time, where favourable outcome was
defined as mRS 0-2. The MRI-based inclusion criteria in WAKE-UP compared to the CT-based inclusion in TWIST could lead to a smaller treatment effect in TWIST. Furthermore, selection bias in observational studies may result in larger treatment effect than in randomised-controlled trials. It is therefore possible that the effect size in TWIST will be closer to the observed effect in recent studies on wake-up stroke patients than to the effect in previous studies on patients with known time of symptom onset and that the mRS distribution in the control group differs from early trials of IV thrombolytic treatment.

Based on these observations, we assume a treatment effect of 10% absolute difference in a binary endpoint setting (mRS 0-1 versus mRS 2-6) and a distribution between modified Rankin Scale categories similar to that of WAKE-UP with 42% with favourable outcome in the non-thrombolysed group vs 52% in the thrombolysed group, which corresponds to an odds ratio of 1.50. We assume a mRS distribution in the control group in six levels (categories 5 and 6 merged) as 15%, 27%, 23%, 17%, 13%, 5%, (similar to the control group the WAKE-UP trial). With a power of 80%, a two-sided significance level of 5%, and an effect size specified as an odds ratio of 1.50 from an ordinal logistic regression model, the estimated sample size is 600. Based on this, the revised target is to recruit 600 patients, i.e. 300 patients in each arm.

11.2 Statistical analyses

A detailed Statistical Analysis Plan has been drawn up and will be published before breaking the randomisation code. We will analyse the data according to the intention-to-treat principle. Functional outcome will be primarily compared between the study groups by means of ordinal logistic regression, after adjustment for covariates. In a secondary analysis, functional outcome will be dichotomised (mRS score 0-1 vs. 2-6) and analysed by means of logistic regression.

For clinical events we will estimate odds ratios and 95% confidence intervals using logistic regression and estimate hazard ratios and 95% confidence intervals using the Cox proportional hazards model, as appropriate. Interactions will be tested using likelihood ratio tests. The risks of clinical events will be compared using Kaplan-Meyer survival analyses and log-rank tests. All analyses will use 5% two-sided level of significance.

We will perform prespecified subgroup analyses of patients with findings suggestive of penumbra (on CT perfusion), of patients included based on presence or absence of DWI/FLAIR mismatch on MRI, of patients with proximal cerebral artery occlusion, and of patients with different time intervals since awakening, controlling for imbalances in baseline characteristics. Subgroup analyses will be prespecified in the Statistical Analysis Plan. Patients treated with intra-arterial intervention for proximal cerebral artery occlusion will also be analysed separately, and the primary effect variable for this analysis will be cerebral arterial patency before intra-arterial intervention.

Any missing components of the baseline NIHSS will be imputed using a regression-based technique, using age and all other components of the NIHSS. A worst-case approach will be used when handling incomplete dates and times for adverse events. For example, events will be assumed to be treatment emergent unless it is clear even from the partial date/time that this is not the case.

As subgroup analyses are of an exploratory nature, no adjustment for multiple comparisons will be made.
12. Trial conduct and practices/procedures

12.1 Compliance with regulations and guidelines
The trial will conform to the EU Clinical Trials Directive (2001/20/EC) and national applicable regulatory requirements. EudraCT number: 2014-000096-80. ISRCTN number: 10601890. ClinicalTrials.gov number: NCT03181360.

12.2 Data protection
Personal identifiers will not be stored together with clinical information about the patient, but will be stored on a separate, password-protected computer with access only for persons in the Trial Coordinating Centre who are responsible for central follow-up. The code linking personal identifiers with clinical data will be destroyed 15 years after the publication of the primary report, of the trial. The procedures for protection of personal information will be approved by the Research Ethics Committee, and data protection officials at the University Hospital of North Norway.

12.3 Ethical conduct
The trial will be conducted in accordance with the MRC Guidelines for Good Clinical Practice in Clinical Trials, the Council of Europe’s Convention on Human rights and Biomedicine (CETS No.: 164), the ICH Harmonized Tripartite Guideline for Good Clinical Practice (CPMP/ICH/135/95) and the Declaration of Helsinki (Edinburgh, October 2000).

We will seek informed consent from all patients, and approval from the ethics committees, according to local or national regulations. All patients will be monitored carefully during treatment and follow-up, and procedures for management of adverse drug reactions, unmasking of the trial treatment, and reporting of serious adverse events are given in the protocol. All events will be evaluated, and the trial will be monitored, audited, and inspected according to applicable regulatory requirements.

12.4 Liability
Patients are indemnified by insurance specific for patients participating in trials of an Investigational Medicinal Product (IMP). Patients are also covered for non-negligent liability by the product indemnity provided by the supplier.

12.5 Recording and reporting of serious adverse events
Serious adverse events will be recorded in the case report forms. In case of unexpected serious adverse events, the Trial Coordinating Centre should be notified immediately and within 24 hours at the latest, in accordance with the EC guidance document 2011/C 172/01 (“CT-3”). The report of the SAE must include an assessment of whether there is a reasonable possibility that the IMP caused the event.

Reports of suspected unexpected serious adverse reactions (SUSARs), with all relevant information, will be reported in an expedited manner by the Sponsor, to the competent authority, the ethics committee, and the Data Monitoring Committee, according to the EU Clinical Trials Directive (2001/20/EC) and applicable regulatory requirements. Copies of such reports will be sent to the principal investigators and the Sponsor. (Definitions of serious adverse events and SUSARs: See Appendix).

Serious adverse events that are expected will not be reported in an expedited manner by the Sponsor, for example recurrent ischaemic stroke, intracranial haemorrhage, myocardial infarction, or death. These are events that are expected, and that will be reported as end-points in the case
report forms. Expected adverse reactions listed in Section 4.8 of the Summary of Product Characteristics will also not be reported in an expedited manner.

12.6 Event adjudication
A central Event Adjudication Committee will evaluate all events, blinded to treatment allocation.

12.7 Monitoring of data quality
The central computer randomisation system will check eligibility for all patients entered in the trial. Data entered over the Internet (at trial entry) and data in case report forms will be checked for validity and internal consistency, to ensure high data quality and completeness, and coherence with the protocol. Centres with poor standards will be contacted and appropriate measures will be taken. During the course of the study the Sponsor will visit all centres at start-up and least once for monitoring purposes, with review of the CRF, comparison with source documents, and observation of the conduct of the trial and adherence to the Protocol. It will be particularly important to check that each patient exists, that a valid consent form is present in the hospital notes, to confirm patient information and adherence to the protocol. There will also be frequent telephone contacts, with the purpose of facilitating the work and fulfilling the objectives of the study.

12.8 Handling of protocol violations and protocol amendments
The nature and reasons for the protocol violation shall be recorded in the CRF, in the source documents and in the monitoring visit report. All of this serious non-compliance will be followed up and reported to RA and IEC as per local regulations. In parallel, corrective and/or preventive actions will be undertaken and documented, including any retraining of the investigator and site staff. All patients who have been included in the trial will be followed up, irrespective of whether treatment was discontinued prematurely, or whether the protocol was violated. If treatment discontinuations or protocol violations become frequent the Data Monitoring Committee will consider whether there is a need to increase the number of patients to be included in the trial.

All important changes to the trial will be specified in protocol amendments. Amendments must be approved by the Steering Committee, and the Sponsor has the responsibility to seek approval from the competent authorities and the ethics committees. Completed and signed protocol amendments will be circulated to all those who were on the circulation list for the original protocol. Amendments will be listed in chapter 17.

12.9 Monitoring of effectiveness and safety
During the course of the trial the Data Monitoring Committee (DMC) will every 6 months perform an unblinded review of SAEs, in all patients, and in the prespecified subgroups. The DMC will also perform an unblinded interim analysis of the primary efficacy and safety variables (functional outcome and intracranial haemorrhage) when half of the patients have been included. If, in their view, there is credible evidence of harm, or overwhelming evidence of efficacy, the committee will advise the chairman of the Steering Committee. Unless this happens, the Steering Committee will remain ignorant of the interim results.

The DMC will also be responsible for monitoring the overall conduct of the trial, and may formulate recommendations relating to the selection, recruitment, or retention of participants, or their management, or to improving their adherence to protocol-specified regimens, and the procedures for data management and quality control.

The DMC will convene before the start of the trial to agree on the exact terms of reference for the committee, and will meet annually during the course of the trial.
12.10 Audit and inspection
All source data and all trial data and material will be made directly available for audit and inspection. Source data is all information in original records and certified copies of original records that is necessary for the reconstruction and evaluation of the trial.

12.11 Handling of patient data
All patients will be assigned a unique code number. The patient data will be linked to this number, and the patients’ names or other personal identifiers will not be included in the database. The patient database will be kept on a separate, secure computer. The code will be stored on another, secure computer, and will be deleted 15 years after the results of the trial have been published. The trial’s procedures for data protection will conform to the Norwegian applicable regulatory requirements, and to the conditions set by the Norwegian Data Inspectorate.

12.12 Handling of the list of treatment codes
The lists of random treatment codes will be produced by the Statistical Centre at the University of Tromsø. Copies of the list will be kept by the person setting up the central randomisation system, and the Trial Statistical Centre. The list will be kept secret for all other people involved in the trial until the closure of the patient database.

12.13 Screening logs
Participating centres will be asked to make records of all patients considered for inclusion in the trial (screening logs).

12.14 Financial conduct
Contracts will be agreed between the Sponsor and each of the investigators/institutions. The Coordinating Investigator or other people centrally involved in the trial will not have any financial or other conflicts of interest in connection to the trial. Patients participating in the trial will be reimbursed for their travel expenses.

12.15 Publication and data sharing policy
The trial will be published in accordance with the CONSORT guidelines and will be presented by a writing committee on behalf of the investigators. All participating centres and collaborators will be acknowledged in the main publication. The primary results and results of any substudies will be presented at international meetings and in public media.

12.16 User involvement
The Patient Advisory Board consists of representatives from two stroke patient organisations in Norway, with Arne Hagen from Norsk forening for slagrammede, and Anne Heimdal from Hjerneslag. The board will be consulted in all phases of the study.

13. Central trial organisation
13.1 Sponsors and funding bodies
The University Hospital of North Norway is the Sponsor of the trial. Address: UNN Tromsø, NO-9038 Tromsø, Norway. Telephone number: +47 77626000. The Director of Research will act as the Sponsor’s legal representative.
The trial receives basic funding from the Norwegian Ministry of Health and Care Services (Clinical Therapy Research in the Specialist Health Services Research Programme (KLINBEFORSK)) and the National Association for Public Health. The trial also receives funding from the British Heart Foundation and from the Swiss Heart Foundation. Boehringer-Ingelheim GmbH will reimburse the Sponsor for the costs of tenecteplase.

13.2 Trial Coordinating Centre
The Trial Coordinating Centre is based at the Brain and Circulation Research Group at the University Hospital of North Norway and the University of Tromsø. The Trial Coordinating Centre consists of the following persons: Trial Coordinating Investigator and Head of Brain and Circulation Research Group Ellisiv B. Mathiesen, Trial Manager Melinda B. Roaldsen, Trial Officer and postdoc researcher Agnethe Eltoft, Assistant Trial Manager Mary-Helen Søyland, Trial IT Manager David Perry, Trial Research Nurse Tone Bratteng.

Eivind Berge had a central role in the initiation, planning and implementation of the trial and was Trial Co-coordinating Investigator until his death in February 2020.

13.3 Trial Statistical Centre
Tom Wilsgaard (chair), others.

13.4 Executive Committee
Melinda Roaldsen, Agnethe Eltoft, Ellisiv B. Mathiesen.

13.5 Imaging Scientific Committee
Agnethe Eltoft, Arnstein Tveiten, representatives from other centres/countries.

13.6 Trial Steering Committee
Bent Indredavik (Chair), Ellisiv B. Mathiesen, Tom G. Robinson, David Werring, Arnstein Tveiten, Jesper Petersson, Erik Lundström, Hanne Krarup Christensen, Jukka Putaala, Janika Kõrv, Dalius Jatuzis, Gian Marco De Marchis, Stefan Engelter, Tom Wilsgaard.

13.7 Data Monitoring Committee
Terje R. Pedersen (Chair), Peter Sandercock, Hans Wedel (statistician).

13.8 Event Adjudication Committee
To be appointed.

14. Time table and end of trial
First patient included: July 2017
Last patient included: September 2021
End of follow-up: December 2021
Presentation of main results: 2022
Follow-up by record linkage with central registries: December 2025

The end of the trial is defined as the last visit of the last patient included.
15. References

25. Wake up Symptomatic Stroke - Benefit of Intravenous Clot Busters or Endovascular Intervention (WASSABI). ClinicalTrials.gov Identifier: NCT01455935.

54. A Randomized Controlled Trial of TNK-tPA Versus Standard of Care for Minor Ischemic Stroke With Proven Occlusion (TEMPO-2). ClinicalTrials.gov Identifier: NCT02398656.

16. Appendix

16.1 Completed and on-going studies of thrombolytic treatment for wake-up stroke

<table>
<thead>
<tr>
<th>Trial (clinicaltrials.gov ID)</th>
<th>Planned enrolment</th>
<th>Participants</th>
<th>Interventions</th>
<th>Primary outcome</th>
<th>Recruitment period</th>
</tr>
</thead>
</table>
| WAKE-UP (NCT01525290) | 800 (503 enrolled) | Ischaemic stroke; <4.5 hours after awakening; MRI DWI/FLAIR mismatch | 1. IV alteplase
2. Placebo | mRS score at 90 days | Nov 2012 – June 2017 |
| WASSABI (NCT01455935) | 90 | Ischaemic stroke on wake-up; <24 h of onset; NIHSS 8-22; 18-80 years; Penumbra on CT perfusion | 1. Best medical care
2. IV alteplase
3. IA treatment | mRS score at 90 days | Nov 2011 – |
| EXTEND (NCT01580839)* | 400, revised target 310 (225 enrolled) | NIHSS 4-26; Penumbra mismatch on MRI or CT | 1. IV alteplase
2. Placebo | mRS score at 90 days | June 2010 – June 2018 |
| THAWS (NCT02002325) | 300 (131 enrolled) | Initial NIHSS ≥5 and ≤25; DWI/FLAIR mismatch on MRI | 1. IV alteplase
2. Control | mRS at 90 days | April 2014 – July 2018 |

16.2 Definitions of clinical events

16.2.1 Serious adverse events

A serious adverse event is any untoward medical occurrence that, at any dose:

- results in death
- is life threatening
- requires hospitalisation or prolongation of an existing hospitalization
- results in disability/incapacity
- is a congenital abnormality / birth defect.

Medical and scientific judgement should be exercised in deciding whether reporting is appropriate in other situations, such as important medical events that may not be immediately life-threatening or result in death or hospitalisation, but may jeopardise the subject or may require medical or surgical intervention to prevent one of the other outcomes listed in the above definition. These should also be considered serious. Examples of such events are invasive or malignant cancers, intensive treatment in an emergency room or at home for allergic bronchospasm, blood dyscrasias or convulsions that do not result in hospitalisation, or development of drug dependency or abuse.

16.2.2 Death

Death will be classified according to cause:

1. Initial stroke
2. Recurrent stroke
3. Myocardial infarction
4. Infection
5. Other vascular cause (e.g. systemic emboli)
6. Other non-vascular cause (e.g. malignancy, trauma)
7. Unknown cause

16.2.3 Recurrent stroke
Neurological deterioration (increase of ≥2 on NIHSS, after exclusion of other causes for neurological deterioration) occurring after 72 hours will be considered as a recurrent stroke. Recurrent stroke will be classified as ischaemic, haemorrhagic or unknown (if not documented on imaging).

16.2.4 Symptomatic intracranial haemorrhage (SICH)
The IST-3\(^1\) and SITS-MOST\(^6\) definition of symptomatic intracranial haemorrhage are used:
SICH per IST-3: symptomatic intracranial haemorrhage is defined as clinically significant deterioration (neurological deterioration, new headache, new acute hypertension, new nausea or vomiting, or sudden decrease in conscious level) or death within the first seven days of treatment with evidence of either significant brain parenchymal haemorrhage (local or distant from the infarct) or significant haemorrhagic transformation (HT) of an infarct on brain imaging.
SICH per SITS-MOST: SICH is defined as local or remote parenchymal haematoma type 2 on the imaging scan obtained 22-36 hours after treatment, plus neurological deterioration, as indicated by an increase in National Institutes of Health Stroke Scale (NIHSS) score of ≥4 points compared to baseline value or the lowest value between baseline and 24 (± 6) hours, or haemorrhage leading to death.
Parenchymal haematoma type 2 indicates a haematoma exceeding 30% of the infarct, with obvious mass effect.\(^6,7\)

16.2.5 Asymptomatic intracranial haemorrhage
Intracranial haemorrhage on brain MRI or CT without: neurological deterioration, new headache, new acute hypertension, new nausea or vomiting or sudden decrease in conscious level.

16.2.6 Neurological deterioration due to index stroke
The definition is an increase of ≥ 2 points in one or more of the NIHSS (irrespective of improvement in any of the other NIHSS sub-scores). When diagnosing neurological deterioration due to index stroke, systemic reasons for deterioration, such as drug-induced hypotension, drug-induced drowsiness, and intercurrent disease should be excluded. No significant haemorrhage should be found on post randomization CT or MR scan.

16.2.7 Acute myocardial infarction
Either one of the following criteria satisfies the diagnosis of myocardial infarction:
1. Typical rise and gradual fall (troponin) or more rapid rise and fall (CK-MB) of biochemical markers of myocardial necrosis with at least one of the following:
 a. ischaemic coronary symptoms;
 b. development of pathologic Q waves on the ECG;
 c. ECG changes indicative of ischemia (ST segment elevation or depression); or
d. coronary artery intervention (e.g. coronary angioplasty).

2. Autopsy pathologic findings of an acute myocardial infarction.

16.2.8 Major extracranial bleeding
Definition of major extracranial bleeding: Clinically overt bleeding associated with one or more of:
- Transfusion of ≥2 red cell units of blood
- A decrease in haemoglobin of 20 g/l (=2 g/dl, = 1.24 mmol/l)
- Bleeding into retroperitoneum, intraocular space or major joint
- Bleeding leading to permanent treatment cessation

Otherwise, the bleeding will be characterized as minor.
16.3 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aPTT</td>
<td>Activated partial thromboplastin time</td>
</tr>
<tr>
<td>ATTEST</td>
<td>Alteplase versus tenecteplase for thrombolysis after ischaemic stroke</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standards of Reporting Trials</td>
</tr>
<tr>
<td>CRF</td>
<td>Case report form</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DWI</td>
<td>Diffusion-weighted imaging</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>ECT</td>
<td>Earin clotting time</td>
</tr>
<tr>
<td>EXTEND</td>
<td>Extending the Time for Thrombolysis in Emergency Neurological Deficits Trial</td>
</tr>
<tr>
<td>FLAIR</td>
<td>Fluid-attenuated inversion recovery</td>
</tr>
<tr>
<td>IEC</td>
<td>Independent ethics committee</td>
</tr>
<tr>
<td>IMP</td>
<td>Investigational medicinal product</td>
</tr>
<tr>
<td>INR</td>
<td>International normalized ratio</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini-mental state examination</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>MR-RESCEDE</td>
<td>Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy</td>
</tr>
<tr>
<td>mRS</td>
<td>Modified Rankin Scale</td>
</tr>
<tr>
<td>NIHSS</td>
<td>National Institutes of Health Stroke Scale</td>
</tr>
<tr>
<td>NOR-TEST</td>
<td>The Norwegian tenecteplase stroke trial</td>
</tr>
<tr>
<td>SSS</td>
<td>Scandinavian Stroke Scale</td>
</tr>
<tr>
<td>TASTE</td>
<td>Tenecteplase versus Alteplase for Stroke Thrombolysis Evaluation</td>
</tr>
<tr>
<td>THAWS</td>
<td>Thrombolysis for Acute Wake-up and Unclear-onset Strokes With Alteplase at 0.6 mg/kg Trial</td>
</tr>
<tr>
<td>TT</td>
<td>Thrombin time</td>
</tr>
<tr>
<td>WAKE-UP</td>
<td>Efficacy and Safety of MRI-based thrombolysis in Wake Up Stroke</td>
</tr>
<tr>
<td>WASSABI</td>
<td>Wake Up Symptomatic Stroke in Acute Brain Ischemia</td>
</tr>
</tbody>
</table>

17. Summary of changes

17.1 Protocol version/date 160323

- Addition of signature page
- Addition of section 3.2: Potential benefits and harms of tenecteplase
- Change to section 4.2 (Study questions and objectives)
- Change to section 5.2 (Exclusion criteria):
 - New exclusion criterion: “NIHSS score >25 or NIHSS consciousness score >2, or seizures during stroke onset”
 - Change to wording of exclusion criterion “High risk of bleeding”
 - New exclusion criterion: “Contraindications to tenecteplase”
 - Change to wording of exclusion criterion “Childbearing potential, pregnancy, positive pregnancy test, breastfeeding”
- Change to section 6.1 (Patient screening)
- Change to section 7.1 (Patient information and consent/assent)
- Change to section 7.2 (Randomisation procedure and recording of baseline characteristics)
- Change to section 8 (Trial treatment)
- Change to section 9 (Visits and examinations from trial entry till end of follow-up)
- Change to section 11.2 (Statistical analyses)
- Change to section 12.2 (Data protection)
- Change to section 12.5 (Recording and reporting of serious adverse events)
- Change to section 12.7 (Monitoring of data quality)
- Change to section 12.8 (Handling of protocol violations)
- Change to section 12.9 (Monitoring of effectiveness and safety)
- Change to section 12.10 (Audit and inspection)
- Change to section 16.2 (Definitions of clinical events)
17.2 Protocol version/date 160421
- Change to section 7.1 (Patient information and consent/assent)

17.3 Protocol version/date 170412
- Change to section 1.7 (Summary of changes)
- Change to section 17 (Section 17)
- Change to section 6.1 (Exclusion criteria): Reversal of effect of anticoagulant drugs
- Change to section 10.2 (Secondary effect variables): New timing
- Change to section 11.2 (Statistical analyses): Specification of secondary analysis
- Change to section 13.1 (Sponsor and Funders), 13.2 (Trial Coordinating Centre), 13.6 (Trial Steering Committee): Update
- Change to section 14 (Time table): Update

17.4 Protocol version/date 180410
- Change to section 5.2 (Exclusion criteria): Reversal of effect of anticoagulant drugs
- Change to section 10.2 (Secondary effect variables): New timing
- Change to section 11.2 (Statistical analyses): Specification of secondary analysis
- Change to section 13.1 (Sponsor and Funders), 13.2 (Trial Coordinating Centre), 13.6 (Trial Steering Committee): Update
- Change to section 14 (Time table): Update

17.5 Protocol version/date 180704
- Section 3: Update on results of recently published relevant studies
- Section 5.1: Change to inclusion criterion: “NIHSS score ≥3”
- Sections 5.2, 6.1 and 8.1.3: Removal of exclusion criterion: “Patient will be treated with intra-arterial interventions for proximal cerebral artery occlusion”
- Section 10.2: Change to secondary effect variables
- Section 11.2: Pre-specification of secondary analyses
- Section 13.6: Change to Trial Steering Committee

17.6 Protocol version/date 200131
- Section 14: Update of time table

17.7 Protocol version/date 200917
- Section 5.2: Change to exclusion criteria: the words “or adnexanet” was deleted from the exclusion criterion: “Any known defect in coagulation (…)

- Section 11.1: Revision of sample size estimation with calculation based on ordinal shift analysis (in line with the primary endpoint in TWIST) and on results from recent studies on patients with wake-up stroke
- Section 12.16: Change to User involvement (update of members of Patient Advisory Board)
- Section 13.1: Correction of Sponsor’s address
- Section 13.2: Change to Trial Coordinating Centre
- Section 13.4: Change to Executive Committee
- Section 13.5: Change to Imaging Scientific Board
- Section 13.6: Change to Trial Steering Committee
- Section 13.8: Update of Event Adjudication Committee
- Section 14: Change to time table
- Section 15: Update of references
- Section 16.1: Update of table
- Section 16.2: Specifications and additions to definitions of clinical events