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Statistical Analysis Plan 

 

Overview 

 

We will use two different analytic approaches to answer the question of interest:  a 

Poisson regression model and marginal structural modeling (MSM).  These are described 

in more detail below. The simpler Poisson model is an extension of tabular rate of event 

analysis. The more complicated MSM model incorporates modeling of the treatment 

decision to more flexibly control for confounding by indication. For each outcome, we 

will only record the first date an outcome occurs.  Also, each outcome will be modeled 

separately. 

 

Detailed Description of Methods 

 

Descriptive Statistics.  We will calculate descriptive statistics at study entry.  We will test 

for differences between the study sites using ANOVA, Chi-Square tests, and t-tests as 

appropriate.  Similarly, we will test for differences between those who receive treatment 

and those who do not.   

 

Poisson Regression Model. We have selected a Poisson regression approach to estimate 

case-mix adjusted outcome rates. This facilitates comparison to simpler tabular analyses. 

People may contribute multiple observations to the data set as covariates change over 

time.  

 

Model: 

Yij ∼ Pois(λijTij) Where Yij is assumed to be either 1 or 0 depending on whether the 

current outcome of interest occurred during the jth exposure window of the ith person,  λij 

is the expected daily rate of events for the the jth exposure window of the ith person and 

Tij is the length of the jth exposure window for the ith person.   

 

The jth exposure window ends when one of the following occurs: end of study, end of 

membership, death, initial DAA Rx dispensed, a covariate changes (only if Trtij = 0), 

post-DAA follow-up time reached (only if Trtij = 1) 30, 90, or 180 days from the initial 

DAA prescription dispense, or current outcome of interest occurs.  

 

As is common for a Poisson regression model, we let 

log⁡(λij) = β0 + β1Trtij + X⃗⃗ ij⁡β⃗  where Trtij indicates whether the ith  individual 

transitioned to DAA at the start of their jth exposure window.  Once the initial 

prescription for DAA is dispensed, they transition from Trti(j−1) = 0 to Trtij = 1 for the 

remainder of the study.  After the transition, to prevent mediation, no covariates are 

updated.  X⃗⃗ ij is the vector of covariates for the the jth exposure window of the ith person. 
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The main parameter of interest, once exponentiated as eβ1 = IRR, can be interpreted as 

the ratio of the rate of an individual adverse event for people taking DAA compared to 

those who do not, after adjusting for possible confounders X⃗⃗ ij. 

Alternatively, we allow multiple treatment groups to be defined based on the total days 

supply of DAA received during the study.   

 

 

Marginal Structural Modeling (MSM) can be thought of as the extension of propensity 

score weighting to treatment decisions over time. In propensity score modeling, the 

comparison and treatment arms are weighted to match the treatment of interest on baseline 

covariates. MSM extends this idea to modeling repeated opportunities to initiate treatment 

over time.  

 

Following the notation of Robins et al. 2000, let Vi denote the vector of baseline static 

covariates, let Lik denote the vector of time-varying covariates, and let Aik denote the 

treatment group, and Yik denote the outcome for person i at time k.  

 

We will fit the pooled logistic regression model for each outcome 

logit⁡(Pik) = β0 + β1aik + β⃗ VVi                                              

where Pik = P(Yik = 1)  and each observation Yik will be weighted using the inverse 

probability of treatment weight (IPTW)  

Wik = ∏
1

⁡P(Ait = ait⁡|⁡ai(t−1), Lit, Vi)

k

t=0

. 

Note that at each point of time we are weighting by the inverse of the probability of the 

treatment received rather than the probability of receiving DAA.  While treatments can 

vary over time, once an individual receives DAA, they are in the DAA treatment group for 

the remainder of the study, so  

P(Aik = 1⁡|ai(k−1) = 1, Lik, Vi) = 1. 

Weighting each observation using IPTW effectively creates a pseudo-population of 

subjects in which treatment is no longer confounded by V or L, thus β̂1 is an unbiased 

estimator of the the causal effect of treatment, if there is no unmeasured confounding.   

 

For each time period k, we will fit the following logistic regression for the treatment 

conditional on all observed covariates. 

logit(P(Aik = 1⁡|Ai(k−1), Lik, Vi)) = γ0k +⁡γ⃗ LLik + γ⃗ VVi.⁡⁡ 

Additional steps will be explored, such as cubic splines, to smooth β0k over time.  Also, 

since Wik tend to be highly variable with small probabilities in the denominator leading to 

large weights, we will explore using the stabilized weight  

SWik = ∏
P(Ait = ait⁡|⁡ai(t−1), Vi)

⁡P(Ait = ait⁡|⁡ai(t−1), Lit, Vi)

k

t=0

. 

Note that the numerator only depends on covariate values at baseline since it does not 

depend on ⁡Lit.  The stabilized weight preserves unbiased estimation of the causal effects 
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of treatment while maintaining the same effective sample size as the original dataset.  If 

some weights are still extreme, we will truncate the weights. 

 

Similar to the treatment model, we will fit a logistic regression to model the probability of 

being censored.  In order to obtain an unbiased estimate of the causal effect of treatment 

after accounting for both censoring and confounding, we will let each time period k in the 

outcome model be weighted by the combined weight 

SWik ⁡× ⁡SWik
+ 

where  

SWik
+ = ∏

P(Cit = cit⁡|⁡ai(t−1), Vi)

⁡P(Cit = cit⁡|⁡ai(t−1), Lit, Vi)

k

t=0

. 

 

We will perform diagnostics on the weights to determine if the weights satisfy the 

assumptions necessary for performing MSM.  Violations will result in adjusting the 

treatment and censoring models as needed until the weights are able to satisfy the 

assumptions and account for observed confounding.  

 

Although no observational study can claim to be free from confounding, the preliminary 

results from KPSC demonstrate that we can identify and account for the differences 

between groups in the methods that we are using. It is worth noting that at this point a 

randomized trial (the only sure way to avoid confounding) would be unethical. Further, 

this is a study of the safety of these agents so we anticipate finding either that there are 

safety problems or that there are not safety problems and either result, with an adequately 

powered study, will be useful to patients and their physicians who are making decisions 

about this treatment. 

Missing data 

 

At the KP sites the EHR is relatively mature.  Based on our experience in the pilot study, 

we do not anticipate much missing data for typical data elements like treatments, 

demographics, vital signs, and lab values. We will run usual checks on variables to 

identify the rate of missing data for key variables and will identify variables with more 

than 5% of missing data.  The OneFlorida sites carefully monitor the fields that are 

submitted with valid data. OneFlorida partners were asked to submit enhanced laboratory 

data with elements that are not included in the PCORnet Common Data Model. These 

enhanced laboratory data are necessary for the HCV study and others.  UFHealth, Health 

Choice Network, Florida Hospital, and Tallahassee Memorial Hospital, which comprise 

the major providers within OneFlorida. We do not anticipate much missing data. 

 

For most EHR based data elements we anticipate very low levels of missing data, 

typically less than 1%. For example, missing rates in the KPSC Hep C populations are: 

eGFR – 1.0%, Gender – 0.1%, Age – 0.1%, Race – 4.0%.  Race imputation will be 

performed using the BISG algorithm from RAND. These values are already routinely 

calculated in the KP system. Other values will be imputed with mean value substitution. 

Sensitivity analysis will be performed by comparing to complete case analysis. Should 
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there be evidence that this missing data is influential full multiple imputation will be 

employed. Perhaps not best thought of as missing data there are variables that may be 

drivers of the treatment decision that may not have been collected. Potentially the most 

important of these is the MELD score of liver function with a missing rate of nearly 10%. 

The decision to collect the elements of the MELD score is likely a function of health 

status. It may be necessary to treat the decision to generate a MELD score as an 

endogenous process and use structural equation models to understand the effects of 

MELD scores on the treatment decision.  

 

If more than trivial amounts of missing data occur, we will use multiple imputation and 

the corresponding analysis procedures to incorporate the estimated effects of imputation 

on coefficients and their standard errors.   Disenrollment can be handled directly in the 

MSM model with an incorporated model for censoring. 

 

Dropout will result primarily from a lapse in membership or death.  Membership and 

death records are kept by the insurer and will be used to record and report dropout.  As 

this is a retrospective analysis of data collected during patient care and stored in the EHR, 

reasons for missing labs and demographics will be unknown and not reported.   

 

A complete case analysis will be compared to imputation based analysis. 

 

 

 


