Bladder Cancer Imaging Study-OCT Imaging to Stage Bladder Tumors

This study is ongoing, but not recruiting participants.
Sponsor:
Information provided by (Responsible Party):
Seth Lerner, Baylor College of Medicine
ClinicalTrials.gov Identifier:
NCT00831558
First received: January 27, 2009
Last updated: July 22, 2013
Last verified: July 2013

January 27, 2009
July 22, 2013
March 2008
December 2013   (final data collection date for primary outcome measure)
Assessment of accuracy and positive predictive value of OCT for determining tumor stage correlated by histopathology [ Time Frame: Upon receipt of data ] [ Designated as safety issue: No ]
Same as current
Complete list of historical versions of study NCT00831558 on ClinicalTrials.gov Archive Site
Correlate cystoscopic stage and grade,surgeon's interpretation of OCT images with histopathologic stage and grade [ Time Frame: Upon receipt of data ] [ Designated as safety issue: No ]
Same as current
Not Provided
Not Provided
 
Bladder Cancer Imaging Study-OCT Imaging to Stage Bladder Tumors
Optical Coherence Tomography as an Adjunct to White Light Cystoscopy for Intravesical Real Time Imaging and Staging of Bladder Cancer

The Niris™ OCT Imaging System is a device used in the operating room together with cystoscopy in order to be able to see the condition of the bladder wall. The current implementation of the fiber optic based OCT probe has a 2.7mm (OD) which easily integrates with standard cystoscopy equipment. It builds on the basic skills of conventional cystoscopy, making it straight-forward to learn and simple to use. Imaging data are captured quickly with a 1.5 second scan time per image. The data acquisition module is smaller than a desktop computer and permits real-time capture of data in a digital format. OCT offers a rapid, minimally-invasive adjunct to white light cystoscopy that may aid in diagnosis and staging of bladder cancer. The image it produces has been proven to show tumors that go deeper than first thought and to show tumors in the earliest stages. The ability to find bladder tumors at the earliest stage and to remove and treat the bladder to prevent recurrence has been proven to be the key to long-term cancer control.

Bladder cancer is the fourth most common cancer in men and the eighth most common in women with approximately 60,000 new cases diagnosed every year. The highest occurrence of bladder cancer is found in industrialized countries such as the United States, Canada, Denmark, Italy and Spain. The incidence is three to four times higher in men compared with women, and the incidence rises with age. Among white men, the annual incidence after the age of 65 is approximately two per 1000 people and the lifetime chance of developing bladder cancer is over 3%.

The majority of patients have non-muscle invasive bladder cancer (cancer that has not spread into the bladder muscle) which can be controlled, but survival depends upon early detection of the cancer. In the 20 years following diagnosis, there is a recurrence rate (the cancer returns after treatment) of 50 to 75%, a progression rate (cancer recurs and is now invasive) of 10 to 40% and a death rate of 10 to 30%.

Optical coherence tomography (OCT) was first used to image human tissue in 1991 and has been developed for clinical applications since that time. OCT employs light (instead of sound waves) to obtain images in a manner analogous to B-mode ultrasonography performing real-time, 10-20 micron scale imaging, nearing the resolution of histopathology. OCT performs two- and three-dimensional imaging in biological tissues by directing harmless near infrared light onto the tissue and measuring the reflected or backscattered intensity of light as a function of depth[1]. Direct comparisons have been performed between OCT and the current clinical technology with the highest resolution, high frequency ultrasound. OCT demonstrated superior performance both quantitatively and qualitatively. The potential clinical use of OCT in the bladder is closely related to cystoscopic imaging with white light. The complementary use of OCT with standard cystoscopy allows acquisition of real-time images of regions of interest at a depth of up to 2mm and a spatial resolution of ~10-20 um. Furthermore, OCT technology is fiber-optic based, which allows its relatively straightforward integration with small catheters and cystoscopes. OCT imaging is performed in real-time making it an attractive technology for implementation as a single episode point-of-care diagnostic, monitoring and surgical-guiding tool. Finally, as an optical imaging technology, OCT can be combined with other optical modalities such as absorption and polarization spectroscopy.

Observational
Observational Model: Case-Only
Time Perspective: Prospective
Not Provided
Not Provided
Probability Sample

Subjects with a bladder tumor to be rescted in the operating room

Bladder Cancer
Not Provided
Patients
  1. Patients demonstrating one or more papillary tumors of the urinary bladder amenable to complete resection (Clinical stage Ta or T1) and not requiring a cystectomy, as identified by outpatient cystoscopy
  2. Patients with a positive cytology or FISH with or without visible tumor
Not Provided

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Active, not recruiting
68
March 2014
December 2013   (final data collection date for primary outcome measure)

Inclusion Criteria:

  1. Patients demonstrating one or more papillary tumors of the urinary bladder amenable to complete resection (Clinical stage Ta or T1) and not requiring a cystectomy, as identified by outpatient cystoscopy
  2. Patients with a positive cytology or FISH with or without visible tumor

Exclusion Criteria:

  1. Tumor at Bladder neck
  2. Under 21 years of age
  3. Pregnancy or breast feeding
Both
18 Years to 65 Years
No
Contact information is only displayed when the study is recruiting subjects
United States
 
NCT00831558
H#21830 Imalux, Imalux Corp. v.12-31-07
No
Seth Lerner, Baylor College of Medicine
Baylor College of Medicine
Not Provided
Principal Investigator: Seth P. Lerner, M.D. BCM
Baylor College of Medicine
July 2013

ICMJE     Data element required by the International Committee of Medical Journal Editors and the World Health Organization ICTRP