The Impact of Zinc Supplementation on Left Ventricular Function in Nonischemic Cardiomyopathy

This study has been completed.
Sponsor:
Collaborator:
Information provided by (Responsible Party):
Jennifer Cowger , MD, MS, University of Michigan
ClinicalTrials.gov Identifier:
NCT00696410
First received: June 9, 2008
Last updated: December 17, 2012
Last verified: December 2012
  Purpose

Heart failure affects over 5.3 million Americans and, while other cardiovascular diseases have enjoyed a reduction in mortality rates over the last decade, the mortality from heart failure continues to rise[1]. Thus, identifying novel therapies that can reduce heart failure development and/or progression are warranted. Unifying to most cardiomyopathic processes is an impaired handling of reactive oxygen species (ROS)[2-4]. Reactive oxygen species are generated as byproducts of inflammation and oxidative stress that occur in the setting of normal myocardial aerobic metabolism. Metallothionein, glutathione reductase, and superoxide dismutase are major antioxidants in the myocardium that help combat oxidative stress and prevent myocardial damage. In certain clinical settings, including cardiac ischemia, diabetes, and heavy metal excess (copper, iron), myocardial oxidative stress levels are greatly increased. When pro-oxidant levels exceed myocardial antioxidant capabilities, ROS-induced membrane, protein, and DNA inactivation can lead to the development of cardiac dysfunction.

One means of preventing the development or progression of cardiomyopathy is to reduce oxidative stress through up-regulation of intramyocardial antioxidants. Murine studies of cardiomyopathy have shown that oral administration of zinc acetate may succeed as an indirect myocardial anti-oxidant because zinc sufficiently up-regulates the intramyocardial production of superoxide dismutase (a zinc-dependant anti-oxidant enzyme) and metallothionein (a "super antioxidant") [5-8]. Zinc also directly reduces prooxidant Cu levels by reducing gastrointestinal zinc absorption. However, to date, no studies have examined the impact of zinc acetate supplementation in subjects with cardiomyopathy and systolic failure on antioxidant capacity and remodeling.

The hypothesis of this pilot study is that administration of oral zinc acetate to humans with cardiomyopathy will lead to an up-regulation of myocardial anti-oxidant capabilities,leading to a favorable reduction in oxidative stress. This study will provide preliminary data to support a randomized, placebo-controlled trial of zinc therapy in heart failure as a means of improving or preventing the progression of systolic dysfunction in subjects with mild-moderate heart failure.


Condition Intervention Phase
Heart Failure
Cardiomyopathies
Drug: Zinc Acetate
Phase 1

Study Type: Interventional
Study Design: Endpoint Classification: Efficacy Study
Intervention Model: Single Group Assignment
Masking: Open Label
Primary Purpose: Treatment
Official Title: Pilot Study to Assess the Impact of Zinc Supplementation on Left Ventricular Remodeling, Function, and Oxidative Stress in Nonischemic Cardiomyopathy

Resource links provided by NLM:


Further study details as provided by University of Michigan:

Primary Outcome Measures:
  • Change from baseline in markers of cardiac collagen turnover (PINP and PIIINP) [ Time Frame: 10 months ] [ Designated as safety issue: No ]

Secondary Outcome Measures:
  • Change from baseline in measures of oxidation (superoxide dismutase, isoprostane), inflammation (CRP, myeloperoxidase), left ventricular function (systolic and diastolic). [ Time Frame: 10 months ] [ Designated as safety issue: No ]

Enrollment: 49
Study Start Date: June 2008
Study Completion Date: June 2011
Primary Completion Date: June 2011 (Final data collection date for primary outcome measure)
Arms Assigned Interventions
Experimental: Primary Drug: Zinc Acetate
Zinc acetate 50 mg po TID for 10 months. Dose will be titrated to achieve ceruloplasmin levels ~10-12.
Other Name: Galzin (zinc acetata, Teva Pharmaceuticals)

Detailed Description:

Altered regulation of the transition-metal copper (Cu) may lead to an overproduction of reactive oxygen species (ROS) with subsequent development of a nonischemic cardiomyopathy (NISCM). Myocardial Cu levels are elevated in NISCM, and Cu levels are highest in the "diabetic cardiomyopathy." In humans, zinc (Zn) is an essential component of proteins critical for regulating myocardial cytoskeleton turnover and cellular proliferation. Zn also serves as an antioxidant and indirect regulator of redox-active Cu. By upregulating the chelator metallothionein, Zn reduces the levels of free Cu implicated in oxidative myocardial damage.

Transgenic over-expression of the antioxidant metallothionein has been shown to reduce ROS-induced myocardial damage. In diabetic cardiomyopathy, Cu chelation improves left ventricular (LV) diastolic relaxation abnormalities. However, it is unknown if Zn supplementation could alter the progression of LV systolic dysfunction through Cu depletion and ROS reduction. The aim of this pilot study is to assess the impact of a novel intervention, Zn supplementation, on myocardial remodeling by examining changes in serum levels of the types I (PINP) and III (PIIINP) collagen N-terminal propeptides. The primary study hypothesis is that Zn supplementation will have a favorable impact on the pathophysiology of NISCM by either repleting a Zn deficiency/insufficiency or by reducing myocardial damage and adverse remodeling in the setting of redox-active Cu excess.

Stable outpatients (n=40) with chronic NISCM (ejection fraction ≤40%) will receive daily oral Zn-acetate (50 mg po tid) for 10 months. Serum PINP, PIIINP, and markers of inflammation (CRP, sedimentation rate, myeloperoxidase) and oxidative stress (8-isoprostane, superoxide dismutase) will be obtained at baseline and following 10 months of Zn supplementation. Changes in collagen turnover will then be correlated with changes noted in LV systolic and diastolic function by echocardiography. Finally, we will examine for a differential treatment effect of Zn therapy in a diabetic subset (n=20) with NISCM compared with the nondiabetics.

  Eligibility

Ages Eligible for Study:   21 Years and older
Genders Eligible for Study:   Both
Accepts Healthy Volunteers:   No
Criteria

Inclusion Criteria:

  • Subjects (n=40) ≥21 years of age with chronic (≥1 year duration) nonischemic cardiomyopathy (NISCM), New York Heart Association (NYHA) functional class II-III symptoms on stable medical therapy (≥3 months of stable doses of β-blocker, angiotensin inhibitor or receptor blocker, and aldosterone inhibitor [if appropriate] therapies) with a documented left ventricular (LV) ejection fraction ≤40% and evidence of LV dilation will be eligible for study participation.
  • The diagnosis of a nonischemic etiology for the cardiomyopathy must be supported by coronary angiography, stress echocardiography, or nuclear scintigraphy.
  • To allow for a comparison of treatment effect in diabetic versus nondiabetic NISCM, half (n=20) of the subjects enrolled will be diabetic

Exclusion Criteria:

  • Subjects with HF that is deemed to be ischemic, congenital, valvular, or infiltrative in etiology, or chemotherapy/toxin-induced will not be eligible for enrollment.
  • Other exclusion criteria include the presence of a life-threatening illness with a projected survival ≤6 months;
  • recurrent ventricular arrhythmias; end-stage renal failure;
  • ongoing infection;
  • inability to follow-up;
  • collagen vascular disease (lupus, sarcoid);
  • enrollment in another investigational study;
  • unstable or symptomatic peripheral artery disease;
  • prior or active Zn supplementation;
  • or ongoing alcohol abuse.
  Contacts and Locations
Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the Contacts provided below. For general information, see Learn About Clinical Studies.

Please refer to this study by its ClinicalTrials.gov identifier: NCT00696410

Locations
United States, Michigan
University of Michigan Health System
Ann Arbor, Michigan, United States, 48109
Sponsors and Collaborators
University of Michigan
Investigators
Principal Investigator: Keith D Aaronson, MD, MS University of Michigan
Study Chair: Jennifer A Cowger, MD, MS University of Michigan
  More Information

No publications provided

Responsible Party: Jennifer Cowger , MD, MS, Assistant Professor, study Coinvestigator, University of Michigan
ClinicalTrials.gov Identifier: NCT00696410     History of Changes
Other Study ID Numbers: HUM0001911, NIHT32-HL007853
Study First Received: June 9, 2008
Last Updated: December 17, 2012
Health Authority: United States: Institutional Review Board

Keywords provided by University of Michigan:
Heart Failure
Cardiomyopathy
Remodeling
Antioxidant
Zinc
Copper

Additional relevant MeSH terms:
Heart Failure
Cardiomyopathies
Heart Diseases
Cardiovascular Diseases
Zinc
Trace Elements
Micronutrients
Growth Substances
Physiological Effects of Drugs
Pharmacologic Actions

ClinicalTrials.gov processed this record on October 19, 2014